本文整理匯總了Python中scipy.linalg.lstsq方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.lstsq方法的具體用法?Python linalg.lstsq怎麽用?Python linalg.lstsq使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.linalg
的用法示例。
在下文中一共展示了linalg.lstsq方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: infer
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lstsq [as 別名]
def infer(self, Ms, ys, scale_factors=None):
''' Either:
1) Ms is a single M and ys is a single y
(scale_factors ignored) or
2) Ms and ys are lists of M matrices and y vectors
and scale_factors is a list of the same length.
'''
A, y = _apply_scales(Ms, ys, scale_factors)
if self.method == 'standard':
assert self.l2_reg == 0, 'l2 reg not supported with method=standard'
(x_est, _, rank, _) = linalg.lstsq(A.dense_matrix(), y, lapack_driver='gelsy')
elif self.method == 'lsmr':
res = lsmr(A, y, atol=0, btol=0, damp=self.l2_reg)
x_est = res[0]
elif self.method == 'lsqr':
res = lsqr(A, y, atol=0, btol=0, damp=self.l2_reg)
x_est = res[0]
return x_est
示例2: mtx_updated_G
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lstsq [as 別名]
def mtx_updated_G(phi_recon, M, mtx_amp2visi_ri, mtx_fri2visi_ri):
"""
Update the linear transformation matrix that links the FRI sequence to the
visibilities by using the reconstructed Dirac locations.
:param phi_recon: the reconstructed Dirac locations (azimuths)
:param M: the Fourier series expansion is between -M to M
:param p_mic_x: a vector that contains microphones' x-coordinates
:param p_mic_y: a vector that contains microphones' y-coordinates
:param mtx_freq2visi: the linear mapping from Fourier series to visibilities
:return:
"""
L = 2 * M + 1
ms_half = np.reshape(np.arange(-M, 1, step=1), (-1, 1), order='F')
phi_recon = np.reshape(phi_recon, (1, -1), order='F')
mtx_amp2freq = np.exp(-1j * ms_half * phi_recon) # size: (M + 1) x K
mtx_amp2freq_ri = np.vstack((mtx_amp2freq.real, mtx_amp2freq.imag[:-1, :])) # size: (2M + 1) x K
mtx_fri2amp_ri = linalg.lstsq(mtx_amp2freq_ri, np.eye(L))[0]
# projection mtx_freq2visi to the null space of mtx_fri2amp
mtx_null_proj = np.eye(L) - np.dot(mtx_fri2amp_ri.T,
linalg.lstsq(mtx_fri2amp_ri.T, np.eye(L))[0])
G_updated = np.dot(mtx_amp2visi_ri, mtx_fri2amp_ri) + \
np.dot(mtx_fri2visi_ri, mtx_null_proj)
return G_updated
示例3: _update_means
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lstsq [as 別名]
def _update_means(self, X, z):
"""Update the variational distributions for the means"""
n_features = X.shape[1]
for k in range(self.n_components):
if self.covariance_type in ['spherical', 'diag']:
num = np.sum(z.T[k].reshape((-1, 1)) * X, axis=0)
num *= self.precs_[k]
den = 1. + self.precs_[k] * np.sum(z.T[k])
self.means_[k] = num / den
elif self.covariance_type in ['tied', 'full']:
if self.covariance_type == 'tied':
cov = self.precs_
else:
cov = self.precs_[k]
den = np.identity(n_features) + cov * np.sum(z.T[k])
num = np.sum(z.T[k].reshape((-1, 1)) * X, axis=0)
num = np.dot(cov, num)
self.means_[k] = linalg.lstsq(den, num)[0]
示例4: alt_orbital_correction
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lstsq [as 別名]
def alt_orbital_correction(self, ifg, deg, offset):
data = ifg.phase_data.reshape(ifg.num_cells)
dm = get_design_matrix(ifg, deg, offset)[~isnan(data)]
fd = data[~isnan(data)].reshape((dm.shape[0], 1))
dmt = dm.T
invNbb = inv(dmt.dot(dm))
orbparams = invNbb.dot(dmt.dot(fd))
alt_params = lstsq(dm, fd)[0]
# FIXME: precision
assert_array_almost_equal(orbparams, alt_params, decimal=2)
dm2 = get_design_matrix(ifg, deg, offset)
if offset:
fullorb = np.reshape(np.dot(dm2[:, :-1], orbparams[:-1]),
ifg.phase_data.shape)
else:
fullorb = np.reshape(np.dot(dm2, orbparams), ifg.phase_data.shape)
offset_removal = nanmedian(
np.reshape(ifg.phase_data - fullorb, (1, -1)))
fwd_correction = fullorb - offset_removal
# ifg.phase_data -= (fullorb - offset_removal)
return ifg.phase_data - fwd_correction
示例5: mtx_updated_G_multiband
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lstsq [as 別名]
def mtx_updated_G_multiband(phi_recon, M, mtx_amp2visi_ri,
mtx_fri2visi_ri, num_bands):
"""
Update the linear transformation matrix that links the FRI sequence to the
visibilities by using the reconstructed Dirac locations.
:param phi_recon: the reconstructed Dirac locations (azimuths)
:param M: the Fourier series expansion is between -M to M
:param p_mic_x: a vector that contains microphones' x-coordinates
:param p_mic_y: a vector that contains microphones' y-coordinates
:param mtx_freq2visi: the linear mapping from Fourier series to visibilities
:return:
"""
L = 2 * M + 1
ms_half = np.reshape(np.arange(-M, 1, step=1), (-1, 1), order='F')
phi_recon = np.reshape(phi_recon, (1, -1), order='F')
mtx_amp2freq = np.exp(-1j * ms_half * phi_recon) # size: (M + 1) x K
mtx_amp2freq_ri = np.vstack((mtx_amp2freq.real, mtx_amp2freq.imag[:-1, :])) # size: (2M + 1) x K
mtx_fri2amp_ri = linalg.lstsq(mtx_amp2freq_ri, np.eye(L))[0]
# projection mtx_freq2visi to the null space of mtx_fri2amp
mtx_null_proj = np.eye(L) - np.dot(mtx_fri2amp_ri.T,
linalg.lstsq(mtx_fri2amp_ri.T, np.eye(L))[0])
G_updated = np.dot(mtx_amp2visi_ri,
linalg.block_diag(*([mtx_fri2amp_ri] * num_bands))
) + \
np.dot(mtx_fri2visi_ri,
linalg.block_diag(*([mtx_null_proj] * num_bands))
)
return G_updated
示例6: solve
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lstsq [as 別名]
def solve(self, Y):
X, _residues, _rank, _sv = la.lstsq(self._Sigma, Y)
return X
示例7: __truediv__
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lstsq [as 別名]
def __truediv__(self, y, niter=100):
if self.explicit is True:
if isinstance(self.A, np.ndarray):
if self.A.shape[0] == self.A.shape[1]:
xest = solve(self.A, y)
else:
xest = lstsq(self.A, y)[0]
else:
xest = spsolve(self.A, y)
else:
xest = lsqr(self, y, iter_lim=niter)[0]
return xest
示例8: apply
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lstsq [as 別名]
def apply(self, resp_matrix, orbit, weights=None):
if weights is None:
weights = np.eye(len(orbit))
resp_matrix = np.dot(weights, resp_matrix)
misallign = np.dot(weights, orbit)
U, s, V = svd(resp_matrix)
s_inv = np.zeros(len(s))
s_max = max(s)
for i in range(len(s)):
#print("S[",i,"]=", s[i], "s max = ", s_max)
if i < int(len(s)/2.):
epsilon = self.epsilon_x
else:
epsilon = self.epsilon_y
if s[i] <= s_max * epsilon:
s_inv[i] = 0.
else:
s_inv[i] = 1. / s[i]
Sinv = np.zeros((np.shape(U)[0], np.shape(V)[0]))
Sinv[:len(s), :len(s)] = np.diag(s_inv)
Sinv = np.transpose(Sinv)
A = np.dot(np.transpose(V), np.dot(Sinv, np.transpose(U)))
angle = np.dot(A, misallign)
#a, b, _, _ = np.linalg.lstsq(resp_matrix, misallign, rcond=self.epsilon_x)
#print(np.shape(a), np.shape(angle))
#print(f"angle = {angle}, a = {a}")
logger.debug("max(abs(angle)) = " + str(np.max(np.abs(angle))) + " min(abs(angle)) = " + str(np.min(np.abs(angle))))
return angle
示例9: solver_lstsq
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lstsq [as 別名]
def solver_lstsq(self, resp_matrix, orbit, weights):
if weights is not None:
# weights = np.eye(len(orbit))
resp_matrix = np.dot(weights, resp_matrix)
orbit = np.copy(np.dot(weights, orbit))
#misallign = np.dot(weights, orbit)
if np.shape(resp_matrix)[1] == 1:
A = np.dot(resp_matrix.T, resp_matrix)
Ainv = 1./A if A[0, 0] != 0 else A
a = np.dot(np.dot(Ainv, resp_matrix.T), orbit)
else:
a, _, _, _ = np.linalg.lstsq(resp_matrix, orbit, rcond=self.epsilon_x)
#a, _, _, _ = lstsq(resp_matrix, misallign, cond=self.epsilon_x, lapack_driver="gelsy")
return a
示例10: glm
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lstsq [as 別名]
def glm(data, para):
"""
Calculates a linear model fit ...
anova/ancova/lin-regress/t-test/etc. Taken from:
Returns
-------
statistic, p-value ???
References
----------
Peterson et al. Statistical limitations in functional neuroimaging
I. Non-inferential methods and statistical models. Phil Trans Royal Soc
Lond B 354: 1239-1260.
"""
if len(para) != len(data):
raise ValueError("data and para must be same length in aglm")
n = len(para)
p = _support.unique(para)
x = zeros((n,len(p))) # design matrix
for l in range(len(p)):
x[:,l] = para == p[l]
# fixme: normal equations are bad. Use linalg.lstsq instead.
b = dot(dot(linalg.inv(dot(np.transpose(x),x)), # i.e., b=inv(X'X)X'Y
np.transpose(x)),data)
diffs = (data - dot(x,b))
s_sq = 1./(n-len(p)) * dot(np.transpose(diffs), diffs)
if len(p) == 2: # ttest_ind
c = array([1,-1])
df = n-2
fact = np.sum(1.0/np.sum(x,0),axis=0) # i.e., 1/n1 + 1/n2 + 1/n3 ...
t = dot(c,b) / np.sqrt(s_sq*fact)
probs = betai(0.5*df,0.5,float(df)/(df+t*t))
return t, probs
else:
raise ValueError("only ttest_ind implemented")
示例11: _solve_lsqr
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lstsq [as 別名]
def _solve_lsqr(self, X, y, shrinkage):
"""Least squares solver.
The least squares solver computes a straightforward solution of the
optimal decision rule based directly on the discriminant functions. It
can only be used for classification (with optional shrinkage), because
estimation of eigenvectors is not performed. Therefore, dimensionality
reduction with the transform is not supported.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training data.
y : array-like, shape (n_samples,) or (n_samples, n_classes)
Target values.
shrinkage : string or float, optional
Shrinkage parameter, possible values:
- None: no shrinkage (default).
- 'auto': automatic shrinkage using the Ledoit-Wolf lemma.
- float between 0 and 1: fixed shrinkage parameter.
Notes
-----
This solver is based on [1]_, section 2.6.2, pp. 39-41.
References
----------
.. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification
(Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN
0-471-05669-3.
"""
self.means_ = _class_means(X, y)
self.covariance_ = _class_cov(X, y, self.priors_, shrinkage)
self.coef_ = linalg.lstsq(self.covariance_, self.means_.T)[0].T
self.intercept_ = (-0.5 * np.diag(np.dot(self.means_, self.coef_.T)) +
np.log(self.priors_))
示例12: test_multinomial_grad_hess
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lstsq [as 別名]
def test_multinomial_grad_hess():
rng = np.random.RandomState(0)
n_samples, n_features, n_classes = 100, 5, 3
X = rng.randn(n_samples, n_features)
w = rng.rand(n_classes, n_features)
Y = np.zeros((n_samples, n_classes))
ind = np.argmax(np.dot(X, w.T), axis=1)
Y[range(0, n_samples), ind] = 1
w = w.ravel()
sample_weights = np.ones(X.shape[0])
grad, hessp = _multinomial_grad_hess(w, X, Y, alpha=1.,
sample_weight=sample_weights)
# extract first column of hessian matrix
vec = np.zeros(n_features * n_classes)
vec[0] = 1
hess_col = hessp(vec)
# Estimate hessian using least squares as done in
# test_logistic_grad_hess
e = 1e-3
d_x = np.linspace(-e, e, 30)
d_grad = np.array([
_multinomial_grad_hess(w + t * vec, X, Y, alpha=1.,
sample_weight=sample_weights)[0]
for t in d_x
])
d_grad -= d_grad.mean(axis=0)
approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel()
assert_array_almost_equal(hess_col, approx_hess_col)
示例13: fit
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lstsq [as 別名]
def fit(self):
"""Solve linear system for the weights.
The weights `self.w` (:math:`\mathbf w`) are found from: :math:`\mathbf
G\,\mathbf w = \mathbf z` or if :math:`r` is given :math:`(\mathbf G +
r\,\mathbf I)\,\mathbf w = \mathbf z`.
with centers == points (center vectors are all data points). Then G is
quadratic. Updates ``self.w``.
Notes
-----
``self.r != None`` : linear system solver
Use :func:`scipy.linalg.solve`. For :math:`r=0`, this always yields
perfect interpolation at the data points. May be numerically
unstable in that case. Use :math:`r>0` to increase stability (try
small values such as ``1e-10`` first) or create smooth fitting (generate
more stiff functions with higher `r`). Behaves similar to ``lstsq``
but appears to be numerically more stable (no small noise in
solution) .. but `r` it is another parameter that needs to be
tuned.
``self.r = None`` : least squares solver
Use :func:`scipy.linalg.lstsq`. Numerically more stable than
direct solver w/o regularization. Will mostly be the same as
the interpolation result, but will not go thru all points for
very noisy data. May create small noise in solution (plot fit
with high point density).
"""
# this test may be expensive for big data sets
assert (self.centers == self.points).all(), "centers == points not fulfilled"
# re-use self.distsq if possible
if self.distsq is None:
self.distsq = self.get_distsq()
G = self.rbf(self.distsq, self.p)
if self.r is None:
self.w, res, rnk, svs = linalg.lstsq(G, self.values)
else:
self.w = linalg.solve(G + np.identity(G.shape[0])*self.r, self.values)
示例14: post
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lstsq [as 別名]
def post(self, hyp, X, y):
""" Generic function to compute posterior distribution.
This function will save the posterior mean and precision matrix as
self.m and self.A and will also update internal parameters (e.g.
N, D and the prior covariance (Sigma_a) and precision (Lambda_a).
"""
N = X.shape[0]
if len(X.shape) == 1:
D = 1
else:
D = X.shape[1]
if (hyp == self.hyp).all() and hasattr(self, 'N'):
print("hyperparameters have not changed, exiting")
return
beta, alpha, gamma = self._parse_hyps(hyp, X)
if self.verbose:
print("estimating posterior ... | hyp=", hyp)
# prior variance
if len(alpha) == 1 or len(alpha) == D:
self.Sigma_a = np.diag(np.ones(D))/alpha
self.Lambda_a = np.diag(np.ones(D))*alpha
else:
raise ValueError("hyperparameter vector has invalid length")
# compute posterior precision and mean
self.A = X.T.dot(self.Lambda_n).dot(X) + self.Lambda_a
self.m = linalg.solve(self.A, X.T,
check_finite=False).dot(self.Lambda_n).dot(y)
#self.m = linalg.lstsq(self.A, X.T,
# check_finite=False)[0].dot(self.Lambda_n).dot(y)
# save stuff
self.N = N
self.D = D
self.hyp = hyp
示例15: fit_line
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lstsq [as 別名]
def fit_line(x, y, plot_line=False):
"""
Plot best fit least squares line, return R^2
"""
A = vstack([x, ones(len(x))]).T
m, c = linalg.lstsq(A, y)[0]
if plot_line:
plt.plot(x, m*x + c, 'r', lw=1.2)
return square(stats.pearsonr(x, y)), m, c