本文整理匯總了Python中scipy.linalg.logm方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.logm方法的具體用法?Python linalg.logm怎麽用?Python linalg.logm使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.linalg
的用法示例。
在下文中一共展示了linalg.logm方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_round_trip_random_float
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import logm [as 別名]
def test_round_trip_random_float(self):
np.random.seed(1234)
for n in range(1, 6):
M_unscaled = np.random.randn(n, n)
for scale in np.logspace(-4, 4, 9):
M = M_unscaled * scale
# Eigenvalues are related to the branch cut.
W = np.linalg.eigvals(M)
err_msg = 'M:{0} eivals:{1}'.format(M, W)
# Check sqrtm round trip because it is used within logm.
M_sqrtm, info = sqrtm(M, disp=False)
M_sqrtm_round_trip = M_sqrtm.dot(M_sqrtm)
assert_allclose(M_sqrtm_round_trip, M)
# Check logm round trip.
M_logm, info = logm(M, disp=False)
M_logm_round_trip = expm(M_logm)
assert_allclose(M_logm_round_trip, M, err_msg=err_msg)
示例2: test_logm_type_conversion_mixed_sign_or_complex_spectrum
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import logm [as 別名]
def test_logm_type_conversion_mixed_sign_or_complex_spectrum(self):
complex_dtype_chars = ('F', 'D', 'G')
for matrix_as_list in (
[[1, 0], [0, -1]],
[[0, 1], [1, 0]],
[[0, 1, 0], [0, 0, 1], [1, 0, 0]]):
# check that the spectrum has the expected properties
W = scipy.linalg.eigvals(matrix_as_list)
assert_(any(w.imag or w.real < 0 for w in W))
# check complex->complex
A = np.array(matrix_as_list, dtype=complex)
A_logm, info = logm(A, disp=False)
assert_(A_logm.dtype.char in complex_dtype_chars)
# check float->complex
A = np.array(matrix_as_list, dtype=float)
A_logm, info = logm(A, disp=False)
assert_(A_logm.dtype.char in complex_dtype_chars)
示例3: test_random_matrices_and_powers
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import logm [as 別名]
def test_random_matrices_and_powers(self):
# Each independent iteration of this fuzz test picks random parameters.
# It tries to hit some edge cases.
np.random.seed(1234)
nsamples = 20
for i in range(nsamples):
# Sample a matrix size and a random real power.
n = random.randrange(1, 5)
p = np.random.randn()
# Sample a random real or complex matrix.
matrix_scale = np.exp(random.randrange(-4, 5))
A = np.random.randn(n, n)
if random.choice((True, False)):
A = A + 1j * np.random.randn(n, n)
A = A * matrix_scale
# Check a couple of analytically equivalent ways
# to compute the fractional matrix power.
# These can be compared because they both use the principal branch.
A_power = fractional_matrix_power(A, p)
A_logm, info = logm(A, disp=False)
A_power_expm_logm = expm(A_logm * p)
assert_allclose(A_power, A_power_expm_logm)
示例4: compute_velocity_from_msg
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import logm [as 別名]
def compute_velocity_from_msg(self, P0, P1):
p0, q0, t0 = self.p_q_t_from_msg(P0)
p1, q1, t1 = self.p_q_t_from_msg(P1)
# There's something wrong with the current function to go from quat to matrix.
# Using the TF version instead.
q0_ros = [q0.x, q0.y, q0.z, q0.w]
q1_ros = [q1.x, q1.y, q1.z, q1.w]
import tf
H0 = tf.transformations.quaternion_matrix(q0_ros)
H0[:3, 3] = p0
H1 = tf.transformations.quaternion_matrix(q1_ros)
H1[:3, 3] = p1
# Let the homogeneous matrix handle the inversion etc. Guaranteed correctness.
H01 = np.dot(np.linalg.inv(H0), H1)
dt = t1 - t0
V = H01[:3, 3] / dt
w_hat = logm(H01[:3, :3]) / dt
Omega = np.array([w_hat[2,1], w_hat[0,2], w_hat[1,0]])
return V, Omega, dt
示例5: compute_velocity_from_msg
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import logm [as 別名]
def compute_velocity_from_msg(self, P0, P1):
p0, q0, t0 = self.p_q_t(P0)
p1, q1, t1 = self.p_q_t(P1)
# There's something wrong with the current function to go from quat to matrix.
# Using the TF version instead.
q0_ros = [q0.x, q0.y, q0.z, q0.w]
q1_ros = [q1.x, q1.y, q1.z, q1.w]
import tf
H0 = tf.transformations.quaternion_matrix(q0_ros)
H0[:3, 3] = p0
H1 = tf.transformations.quaternion_matrix(q1_ros)
H1[:3, 3] = p1
# Let the homogeneous matrix handle the inversion etc. Guaranteed correctness.
H01 = np.dot(np.linalg.inv(H0), H1)
dt = t1 - t0
V = H01[:3, 3] / dt
w_hat = logm(H01[:3, :3]) / dt
Omega = np.array([w_hat[2,1], w_hat[0,2], w_hat[1,0]])
return V, Omega, dt
示例6: exact_matrix_logarithm_trace
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import logm [as 別名]
def exact_matrix_logarithm_trace(Fx, x):
"""
Computes slow-ass Tr(Ln(d(Fx)/dx))
:param Fx: output of f(x)
:param x: input
:return: Tr(Ln(I + df/dx))
"""
bs = Fx.size(0)
outVector = torch.sum(Fx, 0).view(-1)
outdim = outVector.size()[0]
indim = x.view(bs, -1).size()
jac = torch.empty([bs, outdim, indim[1]], dtype=torch.float)
# for each output Fx[i] compute d(Fx[i])/d(x)
for i in range(outdim):
zero_gradients(x)
jac[:, i, :] = torch.autograd.grad(outVector[i], x,
retain_graph=True)[0].view(bs, outdim)
jac = jac.cpu().numpy()
iden = np.eye(jac.shape[1])
log_jac = np.stack([logm(jac[i] + iden) for i in range(bs)])
trace_jac = np.diagonal(log_jac, axis1=1, axis2=2).sum(1)
return trace_jac
示例7: unitary_superoperator_matrix_log
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import logm [as 別名]
def unitary_superoperator_matrix_log(M, mxBasis):
"""
Construct the logarithm of superoperator matrix `M`
that acts as a unitary on density-matrix space,
(`M: rho -> U rho Udagger`) so that log(M) can be
written as the action by Hamiltonian `H`:
`log(M): rho -> -i[H,rho]`.
Parameters
----------
M : numpy array
The superoperator matrix whose logarithm is taken
mxBasis : {'std', 'gm', 'pp', 'qt'} or Basis object
The source and destination basis, respectively. Allowed
values are Matrix-unit (std), Gell-Mann (gm), Pauli-product (pp),
and Qutrit (qt) (or a custom basis object).
Returns
-------
numpy array
A matrix `logM`, of the same shape as `M`, such that `M = exp(logM)`
and `logM` can be written as the action `rho -> -i[H,rho]`.
"""
from . import lindbladtools as _lt # (would create circular imports if at top)
from . import optools as _gt # (would create circular imports if at top)
M_std = change_basis(M, mxBasis, "std")
evals = _np.linalg.eigvals(M_std)
assert(_np.allclose(_np.abs(evals), 1.0)) # simple but technically incomplete check for a unitary superop
# (e.g. could be anti-unitary: diag(1, -1, -1, -1))
U = _gt.process_mx_to_unitary(M_std)
H = _spl.logm(U) / -1j # U = exp(-iH)
logM_std = _lt.hamiltonian_to_lindbladian(H) # rho --> -i[H, rho] * sqrt(d)/2
logM = change_basis(logM_std * (2.0 / _np.sqrt(H.shape[0])), "std", mxBasis)
assert(_np.linalg.norm(_spl.expm(logM) - M) < 1e-8) # expensive b/c of expm - could comment for performance
return logM
示例8: near_identity_matrix_log
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import logm [as 別名]
def near_identity_matrix_log(M, TOL=1e-8):
"""
Construct the logarithm of superoperator matrix `M` that is
near the identity. If `M` is real, the resulting logarithm will be real.
Parameters
----------
M : numpy array
The superoperator matrix whose logarithm is taken
TOL : float, optional
The tolerance used when testing for zero imaginary parts.
Returns
-------
numpy array
An matrix `logM`, of the same shape as `M`, such that `M = exp(logM)`
and `logM` is real when `M` is real.
"""
# A near-identity matrix should have a unique logarithm, and it should be
# real if the original matrix is real
M_is_real = bool(_np.linalg.norm(M.imag) < TOL)
logM = _spl.logm(M)
if M_is_real:
assert(_np.linalg.norm(logM.imag) < TOL), \
"Failed to construct a real logarithm! " \
+ "This is probably because M is not near the identity.\n" \
+ "Its eigenvalues are: " + str(_np.linalg.eigvals(M))
logM = logM.real
return logM
示例9: operation_from_error_generator
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import logm [as 別名]
def operation_from_error_generator(error_gen, target_op, typ="logG-logT"):
"""
Construct a gate from an error generator and a target gate.
Inverts the computation fone in :func:`error_generator` and
returns the value of the gate given by
gate = target_op * exp(error_gen).
Parameters
----------
error_gen : ndarray
The error generator matrix
target_op : ndarray
The target operation matrix
typ : {"logG-logT", "logTiG"}
The type of error generator to compute. Allowed values are:
- "logG-logT" : errgen = log(gate) - log(target_op)
- "logTiG" : errgen = log( dot(inv(target_op), gate) )
Returns
-------
ndarray
The operation matrix.
"""
if typ == "logG-logT":
return _spl.expm(error_gen + _spl.logm(target_op))
elif typ == "logTiG":
return _np.dot(target_op, _spl.expm(error_gen))
elif typ == "logGTi":
return _np.dot(_spl.expm(error_gen), target_op)
else:
raise ValueError("Invalid error-generator type: %s" % typ)
示例10: compute_inplane_from_rotation
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import logm [as 別名]
def compute_inplane_from_rotation(R, vertex):
rot = compute_rotation_from_vertex(vertex)
angle_axis = logm(np.matmul(R, rot.T))
return angle_axis[1, 0]
示例11: rot_mag
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import logm [as 別名]
def rot_mag(R):
angle = (1.0 / math.sqrt(2)) * \
norm(logm(R), 'fro') * 180 / (math.pi)
return angle
示例12: AccViewCls
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import logm [as 別名]
def AccViewCls(output, target, numBins, specificView):
#unified
binSize = 360. / numBins
if specificView:
acc = 0
for t in range(target.shape[0]):
idx = np.where(target[t] != numBins)
ps = idx[0][0] / 3 * 3
_, pred = output[t].view(-1, numBins)[ps: ps + 3].topk(1, 1, True, True)
pred = pred.view(3).float() * binSize / 180. * pi
gt = target[t][ps: ps + 3].float() * binSize / 180. * pi
R_pred = angle2dcm(pred)
R_gt = angle2dcm(gt)
err = ((logm(np.dot(np.transpose(R_pred), R_gt)) ** 2).sum()) ** 0.5 / sqrt2
acc += 1 if err < pi / 6. else 0
return 1.0 * acc / target.shape[0]
else:
_, pred = output.view(target.shape[0] * 3, numBins).topk(1, 1, True, True)
pred = pred.view(target.shape[0], 3).float() * binSize / 180. * pi
target = target.float() * binSize / 180. * pi
acc = 0
for t in range(target.shape[0]):
R_pred = angle2dcm(pred[t])
R_gt = angle2dcm(target[t])
err = ((logm(np.dot(np.transpose(R_pred), R_gt)) ** 2).sum()) ** 0.5 / sqrt2
acc += 1 if err < pi / 6. else 0
return 1.0 * acc / target.shape[0]
示例13: test_logm_consistency
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import logm [as 別名]
def test_logm_consistency(self):
random.seed(1234)
for dtype in [np.float64, np.complex128]:
for n in range(1, 10):
for scale in [1e-4, 1e-3, 1e-2, 1e-1, 1, 1e1, 1e2]:
# make logm(A) be of a given scale
A = (eye(n) + random.rand(n, n) * scale).astype(dtype)
if np.iscomplexobj(A):
A = A + 1j * random.rand(n, n) * scale
assert_array_almost_equal(expm(logm(A)), A)
示例14: test_nils
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import logm [as 別名]
def test_nils(self):
a = array([[-2., 25., 0., 0., 0., 0., 0.],
[0., -3., 10., 3., 3., 3., 0.],
[0., 0., 2., 15., 3., 3., 0.],
[0., 0., 0., 0., 15., 3., 0.],
[0., 0., 0., 0., 3., 10., 0.],
[0., 0., 0., 0., 0., -2., 25.],
[0., 0., 0., 0., 0., 0., -3.]])
m = (identity(7)*3.1+0j)-a
logm(m, disp=False)
#XXX: what would be the correct result?
示例15: test_al_mohy_higham_2012_experiment_1_logm
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import logm [as 別名]
def test_al_mohy_higham_2012_experiment_1_logm(self):
# The logm completes the round trip successfully.
# Note that the expm leg of the round trip is badly conditioned.
A = _get_al_mohy_higham_2012_experiment_1()
A_logm, info = logm(A, disp=False)
A_round_trip = expm(A_logm)
assert_allclose(A_round_trip, A, rtol=1e-5, atol=1e-14)