當前位置: 首頁>>代碼示例>>Python>>正文


Python linalg.hadamard方法代碼示例

本文整理匯總了Python中scipy.linalg.hadamard方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.hadamard方法的具體用法?Python linalg.hadamard怎麽用?Python linalg.hadamard使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.linalg的用法示例。


在下文中一共展示了linalg.hadamard方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import hadamard [as 別名]
def build(self, input_shape):

        hadamard_size = 2 ** int(math.ceil(math.log(max(input_shape[1], self.output_dim), 2)))
        self.hadamard = K.constant(
            value=hadamard(hadamard_size, dtype=np.int8)[:input_shape[1], :self.output_dim])

        init_scale = 1. / math.sqrt(self.output_dim)

        self.scale = self.add_weight(name='scale', 
                                      shape=(1,),
                                      initializer=Constant(init_scale),
                                      trainable=True)

        if self.use_bias:
            self.bias  = self.add_weight(name='bias', 
                                          shape=(self.output_dim,),
                                          initializer=RandomUniform(-init_scale, init_scale),
                                          trainable=True)

        super(HadamardClassifier, self).build(input_shape) 
開發者ID:antorsae,項目名稱:landmark-recognition-challenge,代碼行數:22,代碼來源:hadamard.py

示例2: hadamard_test

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import hadamard [as 別名]
def hadamard_test():
    # Hadamard matrix for n = 4
    size = 4
    M0 = Butterfly(size,
                   diagonal=2,
                   diag=torch.tensor([1.0, 1.0, -1.0, -1.0], requires_grad=True),
                   subdiag=torch.ones(2, requires_grad=True),
                   superdiag=torch.ones(2, requires_grad=True))
    M1 = Butterfly(size,
                   diagonal=1,
                   diag=torch.tensor([1.0, -1.0, 1.0, -1.0], requires_grad=True),
                   subdiag=torch.tensor([1.0, 0.0, 1.0], requires_grad=True),
                   superdiag=torch.tensor([1.0, 0.0, 1.0], requires_grad=True))
    H = M0.matrix() @ M1.matrix()
    assert torch.allclose(H, torch.tensor(hadamard(4), dtype=torch.float))
    M = ButterflyProduct(size, fixed_order=True)
    M.factors[0] = M0
    M.factors[1] = M1
    assert torch.allclose(M.matrix(), H) 
開發者ID:HazyResearch,項目名稱:learning-circuits,代碼行數:21,代碼來源:learning_hadamard.py

示例3: test_wikipedia_example

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import hadamard [as 別名]
def test_wikipedia_example():
    input_ = np.array([1, 0, 1, 0, 0, 1, 1, 0], dtype=np.float64)
    copy = input_.copy()
    H = hadamard(8)
    cyfht(input_)
    npt.assert_array_equal(np.dot(copy, H), input_) 
開發者ID:scikit-learn-contrib,項目名稱:scikit-learn-extra,代碼行數:8,代碼來源:test_fht.py

示例4: test_numerical_fuzzing_fht

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import hadamard [as 別名]
def test_numerical_fuzzing_fht():
    for length in [2, 4, 8, 16, 32, 64]:
        input_ = np.random.normal(size=length)
        copy = input_.copy()
        H = hadamard(length)
        cyfht(input_)
        npt.assert_array_almost_equal(np.dot(copy, H), input_) 
開發者ID:scikit-learn-contrib,項目名稱:scikit-learn-extra,代碼行數:9,代碼來源:test_fht.py

示例5: test_numerical_fuzzing_fht2

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import hadamard [as 別名]
def test_numerical_fuzzing_fht2():
    for length in [2, 4, 8, 16, 32, 64]:
        for rows in [1, 2, 3, 4, 5]:
            input_ = np.random.normal(size=(rows, length))
            copy = input_.copy()
            H = hadamard(length)
            cyfht2(input_)
            npt.assert_array_almost_equal(np.dot(copy, H), input_) 
開發者ID:scikit-learn-contrib,項目名稱:scikit-learn-extra,代碼行數:10,代碼來源:test_fht.py

示例6: __init__

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import hadamard [as 別名]
def __init__(self, input_size, output_size, bias=True, fixed_weights=True, fixed_scale=None):
        super(HadamardProj, self).__init__()
        self.output_size = output_size
        self.input_size = input_size
        sz = 2 ** int(math.ceil(math.log(max(input_size, output_size), 2)))
        mat = torch.from_numpy(hadamard(sz))
        if fixed_weights:
            self.proj = Variable(mat, requires_grad=False)
        else:
            self.proj = nn.Parameter(mat)

        init_scale = 1. / math.sqrt(self.output_size)

        if fixed_scale is not None:
            self.scale = Variable(torch.Tensor(
                [fixed_scale]), requires_grad=False)
        else:
            self.scale = nn.Parameter(torch.Tensor([init_scale]))

        if bias:
            self.bias = nn.Parameter(torch.Tensor(
                output_size).uniform_(-init_scale, init_scale))
        else:
            self.register_parameter('bias', None)

        self.eps = 1e-8 
開發者ID:eladhoffer,項目名稱:convNet.pytorch,代碼行數:28,代碼來源:fixed_proj.py

示例7: call

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import hadamard [as 別名]
def call(self, x, training=None):
        is_training = training not in {0, False}
        output = K.l2_normalize(x, axis=-1) if self.l2_normalize else x
        output = -self.scale * K.dot(output, self.hadamard) # pity .dot requires both tensors to be same type, the last one could be int8
        if self.output_raw_logits:
            output_logits = -self.scale * K.dot(x, self.hadamard) # probably better to reuse output * l2norm
        if self.use_bias:
            output = K.bias_add(output, self.bias)
            if self.output_raw_logits:
                output_logits = K.bias_add(output_logits, self.bias)
        if self.activation is not None:
            output = self.activation(output)
        if self.output_raw_logits:
            return [output, output_logits]
        return output 
開發者ID:antorsae,項目名稱:landmark-recognition-challenge,代碼行數:17,代碼來源:hadamard.py

示例8: _setup

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import hadamard [as 別名]
def _setup(self, config):
        torch.manual_seed(config['seed'])
        self.model = ButterflyProduct(size=config['size'],
                                      fixed_order=config['fixed_order'],
                                      softmax_fn=config['softmax_fn'])
        if (not config['fixed_order']) and config['softmax_fn'] == 'softmax':
            self.semantic_loss_weight = config['semantic_loss_weight']
        self.optimizer = optim.Adam(self.model.parameters(), lr=config['lr'])
        self.n_steps_per_epoch = config['n_steps_per_epoch']
        self.target_matrix = torch.tensor(hadamard(config['size']), dtype=torch.float) 
開發者ID:HazyResearch,項目名稱:learning-circuits,代碼行數:12,代碼來源:learning_hadamard.py

示例9: named_target_matrix

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import hadamard [as 別名]
def named_target_matrix(name, size):
    """
    Parameter:
        name: name of the target matrix
    Return:
        target_matrix: (n, n) numpy array for real matrices or (n, n, 2) for complex matrices.
    """
    if name == 'dft':
        return LA.dft(size, scale='sqrtn')[:, :, None].view('float64')
    elif name == 'idft':
        return np.ascontiguousarray(LA.dft(size, scale='sqrtn').conj().T)[:, :, None].view('float64')
    elif name == 'dft2':
        size_sr = int(math.sqrt(size))
        matrix = np.fft.fft2(np.eye(size_sr**2).reshape(-1, size_sr, size_sr), norm='ortho').reshape(-1, size_sr**2)
        # matrix1d = LA.dft(size_sr, scale='sqrtn')
        # assert np.allclose(np.kron(m1d, m1d), matrix)
        # return matrix[:, :, None].view('float64')
        from butterfly.utils import bitreversal_permutation
        br_perm = bitreversal_permutation(size_sr)
        br_perm2 = np.arange(size_sr**2).reshape(size_sr, size_sr)[br_perm][:, br_perm].reshape(-1)
        matrix = np.ascontiguousarray(matrix[:, br_perm2])
        return matrix[:, :, None].view('float64')
    elif name == 'dct':
        # Need to transpose as dct acts on rows of matrix np.eye, not columns
        # return dct(np.eye(size), norm='ortho').T
        return dct(np.eye(size)).T / math.sqrt(size)
    elif name == 'dst':
        return dst(np.eye(size)).T / math.sqrt(size)
    elif name == 'hadamard':
        return LA.hadamard(size) / math.sqrt(size)
    elif name == 'hadamard2':
        size_sr = int(math.sqrt(size))
        matrix1d = LA.hadamard(size_sr) / math.sqrt(size_sr)
        return np.kron(matrix1d, matrix1d)
    elif name == 'b2':
        size_sr = int(math.sqrt(size))
        import torch
        from butterfly import Block2x2DiagProduct
        b = Block2x2DiagProduct(size_sr)
        matrix1d = b(torch.eye(size_sr)).t().detach().numpy()
        return np.kron(matrix1d, matrix1d)
    elif name == 'convolution':
        np.random.seed(0)
        x = np.random.randn(size)
        return LA.circulant(x) / math.sqrt(size)
    elif name == 'hartley':
        return hartley_matrix(size) / math.sqrt(size)
    elif name == 'haar':
        return haar_matrix(size, normalized=True) / math.sqrt(size)
    elif name == 'legendre':
        grid = np.linspace(-1, 1, size + 2)[1:-1]
        return legendre.legvander(grid, size - 1).T / math.sqrt(size)
    elif name == 'hilbert':
        H = hilbert_matrix(size)
        return H / np.linalg.norm(H, 2)
    elif name == 'randn':
        np.random.seed(0)
        return np.random.randn(size, size) / math.sqrt(size)
    else:
        assert False, 'Target matrix name not recognized or implemented' 
開發者ID:HazyResearch,項目名稱:learning-circuits,代碼行數:62,代碼來源:target_matrix.py


注:本文中的scipy.linalg.hadamard方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。