本文整理匯總了Python中scipy.linalg.get_blas_funcs方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.get_blas_funcs方法的具體用法?Python linalg.get_blas_funcs怎麽用?Python linalg.get_blas_funcs使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.linalg
的用法示例。
在下文中一共展示了linalg.get_blas_funcs方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _matvec
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import get_blas_funcs [as 別名]
def _matvec(v, alpha, cs, ds):
axpy, scal, dotc = get_blas_funcs(['axpy', 'scal', 'dotc'],
cs[:1] + [v])
w = alpha * v
for c, d in zip(cs, ds):
a = dotc(d, v)
w = axpy(c, w, w.size, a)
return w
示例2: _solve
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import get_blas_funcs [as 別名]
def _solve(v, alpha, cs, ds):
"""Evaluate w = M^-1 v"""
if len(cs) == 0:
return v/alpha
# (B + C D^H)^-1 = B^-1 - B^-1 C (I + D^H B^-1 C)^-1 D^H B^-1
axpy, dotc = get_blas_funcs(['axpy', 'dotc'], cs[:1] + [v])
c0 = cs[0]
A = alpha * np.identity(len(cs), dtype=c0.dtype)
for i, d in enumerate(ds):
for j, c in enumerate(cs):
A[i,j] += dotc(d, c)
q = np.zeros(len(cs), dtype=c0.dtype)
for j, d in enumerate(ds):
q[j] = dotc(d, v)
q /= alpha
q = solve(A, q)
w = v/alpha
for c, qc in zip(cs, q):
w = axpy(c, w, w.size, -qc)
return w
示例3: norm2
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import get_blas_funcs [as 別名]
def norm2(q):
q = np.asarray(q)
nrm2 = get_blas_funcs('nrm2', dtype=q.dtype)
return nrm2(q)
示例4: test_get_blas_funcs
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import get_blas_funcs [as 別名]
def test_get_blas_funcs():
# check that it returns Fortran code for arrays that are
# fortran-ordered
f1, f2, f3 = get_blas_funcs(
('axpy', 'axpy', 'axpy'),
(np.empty((2,2), dtype=np.complex64, order='F'),
np.empty((2,2), dtype=np.complex128, order='C'))
)
# get_blas_funcs will choose libraries depending on most generic
# array
assert_equal(f1.typecode, 'z')
assert_equal(f2.typecode, 'z')
if cblas is not None:
assert_equal(f1.module_name, 'cblas')
assert_equal(f2.module_name, 'cblas')
# check defaults.
f1 = get_blas_funcs('rotg')
assert_equal(f1.typecode, 'd')
# check also dtype interface
f1 = get_blas_funcs('gemm', dtype=np.complex64)
assert_equal(f1.typecode, 'c')
f1 = get_blas_funcs('gemm', dtype='F')
assert_equal(f1.typecode, 'c')
# extended precision complex
f1 = get_blas_funcs('gemm', dtype=np.longcomplex)
assert_equal(f1.typecode, 'z')
# check safe complex upcasting
f1 = get_blas_funcs('axpy',
(np.empty((2,2), dtype=np.float64),
np.empty((2,2), dtype=np.complex64))
)
assert_equal(f1.typecode, 'z')
示例5: test_get_blas_funcs_alias
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import get_blas_funcs [as 別名]
def test_get_blas_funcs_alias():
# check alias for get_blas_funcs
f, g = get_blas_funcs(('nrm2', 'dot'), dtype=np.complex64)
assert f.typecode == 'c'
assert g.typecode == 'c'
f, g, h = get_blas_funcs(('dot', 'dotc', 'dotu'), dtype=np.float64)
assert f is g
assert f is h
示例6: norm
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import get_blas_funcs [as 別名]
def norm(x):
nrm2 = get_blas_funcs(['nrm2'], [x])[0]
return nrm2(x)
示例7: norm
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import get_blas_funcs [as 別名]
def norm(x):
"""Compute the Euclidean or Frobenius norm of x.
Returns the Euclidean norm when x is a vector, the Frobenius norm when x
is a matrix (2-d array). More precise than sqrt(squared_norm(x)).
"""
x = np.asarray(x)
if np.any(np.iscomplex(x)):
return np.sqrt(squared_norm(x))
else:
nrm2, = linalg.get_blas_funcs(['nrm2'], [x])
return nrm2(x)
示例8: test_inplace_swap_row
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import get_blas_funcs [as 別名]
def test_inplace_swap_row():
X = np.array([[0, 3, 0],
[2, 4, 0],
[0, 0, 0],
[9, 8, 7],
[4, 0, 5]], dtype=np.float64)
X_csr = sp.csr_matrix(X)
X_csc = sp.csc_matrix(X)
swap = linalg.get_blas_funcs(('swap',), (X,))
swap = swap[0]
X[0], X[-1] = swap(X[0], X[-1])
inplace_swap_row(X_csr, 0, -1)
inplace_swap_row(X_csc, 0, -1)
assert_array_equal(X_csr.toarray(), X_csc.toarray())
assert_array_equal(X, X_csc.toarray())
assert_array_equal(X, X_csr.toarray())
X[2], X[3] = swap(X[2], X[3])
inplace_swap_row(X_csr, 2, 3)
inplace_swap_row(X_csc, 2, 3)
assert_array_equal(X_csr.toarray(), X_csc.toarray())
assert_array_equal(X, X_csc.toarray())
assert_array_equal(X, X_csr.toarray())
assert_raises(TypeError, inplace_swap_row, X_csr.tolil())
X = np.array([[0, 3, 0],
[2, 4, 0],
[0, 0, 0],
[9, 8, 7],
[4, 0, 5]], dtype=np.float32)
X_csr = sp.csr_matrix(X)
X_csc = sp.csc_matrix(X)
swap = linalg.get_blas_funcs(('swap',), (X,))
swap = swap[0]
X[0], X[-1] = swap(X[0], X[-1])
inplace_swap_row(X_csr, 0, -1)
inplace_swap_row(X_csc, 0, -1)
assert_array_equal(X_csr.toarray(), X_csc.toarray())
assert_array_equal(X, X_csc.toarray())
assert_array_equal(X, X_csr.toarray())
X[2], X[3] = swap(X[2], X[3])
inplace_swap_row(X_csr, 2, 3)
inplace_swap_row(X_csc, 2, 3)
assert_array_equal(X_csr.toarray(), X_csc.toarray())
assert_array_equal(X, X_csc.toarray())
assert_array_equal(X, X_csr.toarray())
assert_raises(TypeError, inplace_swap_row, X_csr.tolil())
示例9: test_inplace_swap_column
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import get_blas_funcs [as 別名]
def test_inplace_swap_column():
X = np.array([[0, 3, 0],
[2, 4, 0],
[0, 0, 0],
[9, 8, 7],
[4, 0, 5]], dtype=np.float64)
X_csr = sp.csr_matrix(X)
X_csc = sp.csc_matrix(X)
swap = linalg.get_blas_funcs(('swap',), (X,))
swap = swap[0]
X[:, 0], X[:, -1] = swap(X[:, 0], X[:, -1])
inplace_swap_column(X_csr, 0, -1)
inplace_swap_column(X_csc, 0, -1)
assert_array_equal(X_csr.toarray(), X_csc.toarray())
assert_array_equal(X, X_csc.toarray())
assert_array_equal(X, X_csr.toarray())
X[:, 0], X[:, 1] = swap(X[:, 0], X[:, 1])
inplace_swap_column(X_csr, 0, 1)
inplace_swap_column(X_csc, 0, 1)
assert_array_equal(X_csr.toarray(), X_csc.toarray())
assert_array_equal(X, X_csc.toarray())
assert_array_equal(X, X_csr.toarray())
assert_raises(TypeError, inplace_swap_column, X_csr.tolil())
X = np.array([[0, 3, 0],
[2, 4, 0],
[0, 0, 0],
[9, 8, 7],
[4, 0, 5]], dtype=np.float32)
X_csr = sp.csr_matrix(X)
X_csc = sp.csc_matrix(X)
swap = linalg.get_blas_funcs(('swap',), (X,))
swap = swap[0]
X[:, 0], X[:, -1] = swap(X[:, 0], X[:, -1])
inplace_swap_column(X_csr, 0, -1)
inplace_swap_column(X_csc, 0, -1)
assert_array_equal(X_csr.toarray(), X_csc.toarray())
assert_array_equal(X, X_csc.toarray())
assert_array_equal(X, X_csr.toarray())
X[:, 0], X[:, 1] = swap(X[:, 0], X[:, 1])
inplace_swap_column(X_csr, 0, 1)
inplace_swap_column(X_csc, 0, 1)
assert_array_equal(X_csr.toarray(), X_csc.toarray())
assert_array_equal(X, X_csc.toarray())
assert_array_equal(X, X_csr.toarray())
assert_raises(TypeError, inplace_swap_column, X_csr.tolil())