本文整理匯總了Python中scipy.linalg.eigvalsh方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.eigvalsh方法的具體用法?Python linalg.eigvalsh怎麽用?Python linalg.eigvalsh使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.linalg
的用法示例。
在下文中一共展示了linalg.eigvalsh方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: diagonalize
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvalsh [as 別名]
def diagonalize(h,nkpoints=100):
""" Diagonalice a hamiltonian """
import scipy.linalg as lg
# for one dimensional systems
if h.dimensionality==1: # one simensional system
klist = np.arange(0.0,1.0,1.0/nkpoints) # create array with the klist
if h.geometry.shift_kspace:
klist = np.arange(-0.5,0.5,1.0/nkpoints) # create array with the klist
intra = h.intra # assign intraterm
inter = h.inter # assign interterm
energies = [] # list with the energies
for k in klist: # loop over kpoints
bf = np.exp(1j*np.pi*2.*k) # bloch factor for the intercell terms
inter_k = inter*bf # bloch hopping
hk = intra + inter_k + inter_k.H # k dependent hamiltonian
energies += [lg.eigvalsh(hk)] # get eigenvalues of the current hamiltonian
energies = np.array(energies).transpose() # each kpoint in a line
return (klist,energies) # return the klist and the energies
# for zero dimensional systems system
elif h.dimensionality==0:
intra = h.intra # assign intraterm
energies = lg.eigvalsh(intra) # get eigenvalues of the current hamiltonian
return (range(len(intra)),energies) # return indexes and energies
else: raise
示例2: diagonalize_kpath
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvalsh [as 別名]
def diagonalize_kpath(h,kpath):
"""Diagonalice in a certain path"""
energies = [] # empty list with energies
import scipy.linalg as lg
ik = 0.
iks = [] # empty list
for k in kpath:
f = h.get_hk_gen() # get Hk generator
hk = f(k) # k dependent hamiltonian
es = (lg.eigvalsh(hk)).tolist() # get eigenvalues for current hamiltonian
energies += es # append energies
iks += [ik for i in es]
ik += 1.
iks = np.array(iks)
iks = iks/max(iks) # normalize path
return (iks,energies)
示例3: eigenvalues
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvalsh [as 別名]
def eigenvalues(h0,nk=10,notime=False):
"""Return all the eigenvalues of a Hamiltonian"""
from . import klist
h = h0.copy() # copy hamiltonian
h.turn_dense()
ks = klist.kmesh(h.dimensionality,nk=nk) # get grid
hkgen = h.get_hk_gen() # get generator
if parallel.cores==1:
es = [] # empty list
if not notime: est = timing.Testimator(maxite=len(ks))
for k in ks: # loop
if not notime: est.iterate()
es += algebra.eigvalsh(hkgen(k)).tolist() # add
else:
f = lambda k: algebra.eigvalsh(hkgen(k)) # add
es = parallel.pcall(f,ks) # call in parallel
es = np.array(es)
es = es.reshape(es.shape[0]*es.shape[1])
return es # return all the eigenvalues
示例4: kmesh_density
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvalsh [as 別名]
def kmesh_density(h,nk=20,delta=0.01):
"""Function to compute a k-mesh density districution"""
if h.dimensionality !=2: raise
hkgen = h.get_hk_gen() # get generator
out = [] # empty list
xout = []
yout = []
for x in np.linspace(-0.1,1.1,nk,endpoint=True):
for y in np.linspace(-0.1,1.1,nk,endpoint=True):
hk = hkgen([x,y])
es = lg.eigvalsh(hk) # eigenvalues
e = np.min(es[es>0.]) - np.max(es[es<0.]) # gap
out.append(e) # append gap
xout.append(x)
yout.append(y)
# now create the function that interpolates
import interpolation
f = interpolation.interpolator2d(xout,yout,out) # interpolator function
# now define a function that returns a probability density
def fout(k):
return delta/(delta**2 + f(k[0],k[1])) # output
return fout # return function
示例5: eigvalsh
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvalsh [as 別名]
def eigvalsh(m):
"""Wrapper for linalg"""
m = todense(m) # turn the matrix dense
if np.max(np.abs(m.imag))<error: m = m.real # real matrix
if not accelerate: return dlg.eigvalsh(m)
# check if doing slices helps
n = m.shape[0] # size of the matrix
mo = m[0:n:2,1:n:2] # off diagonal is zero
# if False: # assume block diagonal
if np.max(np.abs(mo))<error: # assume block diagonal
# detected block diagonal
es0 = dlg.eigvalsh(m[0:n:2,0:n:2]) # recall
es1 = dlg.eigvalsh(m[1:n:2,1:n:2]) # recall
es = np.concatenate([es0,es1]) # concatenate array
return es
else:
if np.max(np.abs(m.imag))<error: # assume real
return dlg.eigvalsh(m.real) # diagonalize real matrix
else: return dlg.eigvalsh(m) # diagonalize complex matrix
示例6: dos1d_ewindow
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvalsh [as 別名]
def dos1d_ewindow(h,energies=np.linspace(-1.,1.,30),delta=None,info=False,
use_green=True,nk=300):
"""Calculate the density of states in certain energy window"""
ys = [] # density of states
if delta is None: # pick a good delta value
delta = 0.1*(max(energies) - min(energies))/len(energies)
if True: # do not use green function
import scipy.linalg as lg
kxs = np.linspace(0.,1.,nk)
hkgen= h.get_hk_gen() # get hamiltonian generator
ys = energies*0.
weight = 1./(nk)
for ix in kxs:
hk = hkgen(ix) # get hk hamiltonian
evals = lg.eigvalsh(hk) # get eigenvalues
ys += weight*calculate_dos(evals,energies,delta) # add this contribution
if info: print("Done",ix)
write_dos(energies,ys) # write in file
return
示例7: _validate_covars
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvalsh [as 別名]
def _validate_covars(covars, covariance_type, n_components):
"""Do basic checks on matrix covariance sizes and values
"""
from scipy import linalg
if covariance_type == 'spherical':
if len(covars) != n_components:
raise ValueError("'spherical' covars have length n_components")
elif np.any(covars <= 0):
raise ValueError("'spherical' covars must be non-negative")
elif covariance_type == 'tied':
if covars.shape[0] != covars.shape[1]:
raise ValueError("'tied' covars must have shape (n_dim, n_dim)")
elif (not np.allclose(covars, covars.T)
or np.any(linalg.eigvalsh(covars) <= 0)):
raise ValueError("'tied' covars must be symmetric, "
"positive-definite")
elif covariance_type == 'diag':
if len(covars.shape) != 2:
raise ValueError("'diag' covars must have shape "
"(n_components, n_dim)")
elif np.any(covars <= 0):
raise ValueError("'diag' covars must be non-negative")
elif covariance_type == 'full':
if len(covars.shape) != 3:
raise ValueError("'full' covars must have shape "
"(n_components, n_dim, n_dim)")
elif covars.shape[1] != covars.shape[2]:
raise ValueError("'full' covars must have shape "
"(n_components, n_dim, n_dim)")
for n, cv in enumerate(covars):
if (not np.allclose(cv, cv.T)
or np.any(linalg.eigvalsh(cv) <= 0)):
raise ValueError("component %d of 'full' covars must be "
"symmetric, positive-definite" % n)
else:
raise ValueError("covariance_type must be one of " +
"'spherical', 'tied', 'diag', 'full'")
示例8: _check_precision_matrix
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvalsh [as 別名]
def _check_precision_matrix(precision, covariance_type):
"""Check a precision matrix is symmetric and positive-definite."""
if not (np.allclose(precision, precision.T) and
np.all(linalg.eigvalsh(precision) > 0.)):
raise ValueError("'%s precision' should be symmetric, "
"positive-definite" % covariance_type)
示例9: _validate_covars
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvalsh [as 別名]
def _validate_covars(covars, covariance_type, n_components):
'''Do basic checks on matrix covariance sizes and values
'''
if covariance_type == 'spherical':
if len(covars) != n_components:
raise ValueError("'spherical' covars have length n_components")
elif np.any(covars <= 0):
raise ValueError("'spherical' covars must be non-negative")
elif covariance_type == 'tied':
if covars.shape[0] != covars.shape[1]:
raise ValueError(
"'tied' covars must have shape (n_dimensions, n_dimensions)")
elif (not np.allclose(covars, covars.T)
or np.any(linalg.eigvalsh(covars) <= 0)):
raise ValueError("'tied' covars must be symmetric, "
"positive-definite")
elif covariance_type == 'diag':
if len(covars.shape) != 2:
raise ValueError("'diag' covars must have shape "
"(n_components, n_dimensions)")
elif np.any(covars <= 0):
raise ValueError("'diag' covars must be non-negative")
elif covariance_type == 'full':
if len(covars.shape) != 3:
raise ValueError("'full' covars must have shape "
"(n_components, n_dimensions, n_dimensions)")
elif covars.shape[1] != covars.shape[2]:
raise ValueError("'full' covars must have shape "
"(n_components, n_dimensions, n_dimensions)")
for n, cv in enumerate(covars):
if (not np.allclose(cv, cv.T)
or np.any(linalg.eigvalsh(cv) <= 0)):
raise ValueError("component %d of 'full' covars must be "
"symmetric, positive-definite" % n)
else:
raise ValueError("covariance_type must be one of " +
"'spherical', 'tied', 'diag', 'full'")
示例10: _validate_covars
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvalsh [as 別名]
def _validate_covars(covars, covariance_type, n_components):
"""Do basic checks on matrix covariance sizes and values."""
from scipy import linalg
if covariance_type == 'spherical':
if len(covars) != n_components:
raise ValueError("'spherical' covars have length n_components")
elif np.any(covars <= 0):
raise ValueError("'spherical' covars must be non-negative")
elif covariance_type == 'tied':
if covars.shape[0] != covars.shape[1]:
raise ValueError("'tied' covars must have shape (n_dim, n_dim)")
elif (not np.allclose(covars, covars.T)
or np.any(linalg.eigvalsh(covars) <= 0)):
raise ValueError("'tied' covars must be symmetric, "
"positive-definite")
elif covariance_type == 'diag':
if len(covars.shape) != 2:
raise ValueError("'diag' covars must have shape "
"(n_components, n_dim)")
elif np.any(covars <= 0):
raise ValueError("'diag' covars must be non-negative")
elif covariance_type == 'full':
if len(covars.shape) != 3:
raise ValueError("'full' covars must have shape "
"(n_components, n_dim, n_dim)")
elif covars.shape[1] != covars.shape[2]:
raise ValueError("'full' covars must have shape "
"(n_components, n_dim, n_dim)")
for n, cv in enumerate(covars):
if (not np.allclose(cv, cv.T)
or np.any(linalg.eigvalsh(cv) <= 0)):
raise ValueError("component %d of 'full' covars must be "
"symmetric, positive-definite" % n)
else:
raise ValueError("covariance_type must be one of " +
"'spherical', 'tied', 'diag', 'full'")
示例11: _validate_covars
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvalsh [as 別名]
def _validate_covars(covars, covariance_type, n_components):
"""Do basic checks on matrix covariance sizes and values."""
from scipy import linalg
if covariance_type == 'spherical':
if len(covars) != n_components:
raise ValueError("'spherical' covars have length n_components")
elif np.any(covars <= 0):
raise ValueError("'spherical' covars must be positive")
elif covariance_type == 'tied':
if covars.shape[0] != covars.shape[1]:
raise ValueError("'tied' covars must have shape (n_dim, n_dim)")
elif (not np.allclose(covars, covars.T)
or np.any(linalg.eigvalsh(covars) <= 0)):
raise ValueError("'tied' covars must be symmetric, "
"positive-definite")
elif covariance_type == 'diag':
if len(covars.shape) != 2:
raise ValueError("'diag' covars must have shape "
"(n_components, n_dim)")
elif np.any(covars <= 0):
raise ValueError("'diag' covars must be positive")
elif covariance_type == 'full':
if len(covars.shape) != 3:
raise ValueError("'full' covars must have shape "
"(n_components, n_dim, n_dim)")
elif covars.shape[1] != covars.shape[2]:
raise ValueError("'full' covars must have shape "
"(n_components, n_dim, n_dim)")
for n, cv in enumerate(covars):
if (not np.allclose(cv, cv.T)
or np.any(linalg.eigvalsh(cv) <= 0)):
raise ValueError("component %d of 'full' covars must be "
"symmetric, positive-definite" % n)
else:
raise ValueError("covariance_type must be one of " +
"'spherical', 'tied', 'diag', 'full'")
# Copied from scikit-learn 0.19.
示例12: laplacian_spectrum
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvalsh [as 別名]
def laplacian_spectrum(G, weight='weight'):
"""Return eigenvalues of the Laplacian of G
Parameters
----------
G : graph
A NetworkX graph
weight : string or None, optional (default='weight')
The edge data key used to compute each value in the matrix.
If None, then each edge has weight 1.
Returns
-------
evals : NumPy array
Eigenvalues
Notes
-----
For MultiGraph/MultiDiGraph, the edges weights are summed.
See to_numpy_matrix for other options.
See Also
--------
laplacian_matrix
"""
from scipy.linalg import eigvalsh
return eigvalsh(nx.laplacian_matrix(G,weight=weight).todense())
示例13: distance_riemann
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvalsh [as 別名]
def distance_riemann(A, B):
"""Riemannian distance between two covariance matrices A and B.
.. math::
d = {\left( \sum_i \log(\lambda_i)^2 \\right)}^{-1/2}
where :math:`\lambda_i` are the joint eigenvalues of A and B
:param A: First covariance matrix
:param B: Second covariance matrix
:returns: Riemannian distance between A and B
"""
return numpy.sqrt((numpy.log(eigvalsh(A, B))**2).sum())
示例14: degenerate_points
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvalsh [as 別名]
def degenerate_points(h,n=0):
"""Return the points in the Brillouin zone that have a node
in the bandstructure"""
from scipy.optimize import differential_evolution
bounds = [(0.,1.) for i in range(h.dimensionality)]
hk_gen = h.get_hk_gen() # generator
def get_point(x0):
def f(k): # conduction band eigenvalues
hk = hk_gen(k) # Hamiltonian
es = lg.eigvalsh(hk) # get eigenvalues
return abs(es[n]-es[n+1]) # gap
res = differential_evolution(f,bounds=bounds) # minimize
return res.x
x0 = np.random.random(h.dimensionality) # inital vector
return get_point(x0) # get the k-point
示例15: boolean_fermi_surface
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvalsh [as 別名]
def boolean_fermi_surface(h,write=True,output_file="BOOL_FERMI_MAP.OUT",
e=0.0,nk=50,nsuper=1,reciprocal=False,
delta=None):
"""Calculates the Fermi surface of a 2d system"""
if h.dimensionality!=2: raise # continue if two dimensional
hk_gen = h.get_hk_gen() # gets the function to generate h(k)
kxs = np.linspace(-nsuper,nsuper,nk) # generate kx
kys = np.linspace(-nsuper,nsuper,nk) # generate ky
kdos = [] # empty list
kxout = []
kyout = []
if reciprocal: R = h.geometry.get_k2K() # get matrix
# setup a reasonable value for delta
if delta is None:
delta = 8./np.max(np.abs(h.intra))/nk
for x in kxs:
for y in kxs:
r = np.matrix([x,y,0.]).T # real space vectors
k = np.array((R*r).T)[0] # change of basis
hk = hk_gen(k) # get hamiltonian
evals = lg.eigvalsh(hk) # diagonalize
de = np.abs(evals - e) # difference with respect to fermi
de = de[de<delta] # energies close to fermi
if len(de)>0: kdos.append(1.0) # add to the list
else: kdos.append(0.0) # add to the list
kxout.append(x)
kyout.append(y)
if write: # optionally, write in file
f = open(output_file,"w")
for (x,y,d) in zip(kxout,kyout,kdos):
f.write(str(x)+ " "+str(y)+" "+str(d)+"\n")
f.close() # close the file
return (kxout,kyout,d) # return result