當前位置: 首頁>>代碼示例>>Python>>正文


Python linalg.eigvals_banded方法代碼示例

本文整理匯總了Python中scipy.linalg.eigvals_banded方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.eigvals_banded方法的具體用法?Python linalg.eigvals_banded怎麽用?Python linalg.eigvals_banded使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.linalg的用法示例。


在下文中一共展示了linalg.eigvals_banded方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _gen_roots_and_weights

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvals_banded [as 別名]
def _gen_roots_and_weights(n, mu0, an_func, bn_func, f, df, symmetrize, mu):
    """[x,w] = gen_roots_and_weights(n,an_func,sqrt_bn_func,mu)

    Returns the roots (x) of an nth order orthogonal polynomial,
    and weights (w) to use in appropriate Gaussian quadrature with that
    orthogonal polynomial.

    The polynomials have the recurrence relation
          P_n+1(x) = (x - A_n) P_n(x) - B_n P_n-1(x)

    an_func(n)          should return A_n
    sqrt_bn_func(n)     should return sqrt(B_n)
    mu ( = h_0 )        is the integral of the weight over the orthogonal
                        interval
    """
    k = np.arange(n, dtype='d')
    c = np.zeros((2, n))
    c[0,1:] = bn_func(k[1:])
    c[1,:] = an_func(k)
    x = linalg.eigvals_banded(c, overwrite_a_band=True)

    # improve roots by one application of Newton's method
    y = f(n, x)
    dy = df(n, x)
    x -= y/dy

    fm = f(n-1, x)
    fm /= np.abs(fm).max()
    dy /= np.abs(dy).max()
    w = 1.0 / (fm * dy)

    if symmetrize:
        w = (w + w[::-1]) / 2
        x = (x - x[::-1]) / 2

    w *= mu0 / w.sum()

    if mu:
        return x, w, mu0
    else:
        return x, w

# Jacobi Polynomials 1               P^(alpha,beta)_n(x) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:45,代碼來源:orthogonal.py

示例2: _find_tapers_from_optimization

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvals_banded [as 別名]
def _find_tapers_from_optimization(n_time_samples_per_window, time_index,
                                   half_bandwidth, n_tapers):
    '''here we want to set up an optimization problem to find a sequence
    whose energy is maximally concentrated within band
    [-half_bandwidth, half_bandwidth]. Thus,
    the measure lambda(T, half_bandwidth) is the ratio between the
    energy within that band, and the total energy. This leads to the
    eigen-system (A - (l1)I)v = 0, where the eigenvector corresponding
    to the largest eigenvalue is the sequence with maximally
    concentrated energy. The collection of eigenvectors of this system
    are called Slepian sequences, or discrete prolate spheroidal
    sequences (DPSS). Only the first K, K = 2NW/dt orders of DPSS will
    exhibit good spectral concentration
    [see http://en.wikipedia.org/wiki/Spectral_concentration_problem]

    Here I set up an alternative symmetric tri-diagonal eigenvalue
    problem such that
    (B - (l2)I)v = 0, and v are our DPSS (but eigenvalues l2 != l1)
    the main diagonal = ([n_time_samples_per_window-1-2*t]/2)**2 cos(2PIW),
    t=[0,1,2,...,n_time_samples_per_window-1] and the first off-diagonal =
    t(n_time_samples_per_window-t)/2, t=[1,2,...,
    n_time_samples_per_window-1] [see Percival and Walden, 1993]'''
    diagonal = (
        ((n_time_samples_per_window - 1 - 2 * time_index) / 2.) ** 2
        * np.cos(2 * np.pi * half_bandwidth))
    off_diag = np.zeros_like(time_index)
    off_diag[:-1] = (
        time_index[1:] * (n_time_samples_per_window - time_index[1:]) / 2.)
    # put the diagonals in LAPACK 'packed' storage
    ab = np.zeros((2, n_time_samples_per_window), dtype='d')
    ab[1] = diagonal
    ab[0, 1:] = off_diag[:-1]
    # only calculate the highest n_tapers eigenvalues
    w = eigvals_banded(
        ab, select='i',
        select_range=(n_time_samples_per_window - n_tapers,
                      n_time_samples_per_window - 1))
    w = w[::-1]

    # find the corresponding eigenvectors via inverse iteration
    t = np.linspace(0, np.pi, n_time_samples_per_window)
    tapers = np.zeros((n_tapers, n_time_samples_per_window), dtype='d')
    for taper_ind in range(n_tapers):
        tapers[taper_ind, :] = tridi_inverse_iteration(
            diagonal, off_diag, w[taper_ind],
            x0=np.sin((taper_ind + 1) * t))
    return tapers 
開發者ID:Eden-Kramer-Lab,項目名稱:spectral_connectivity,代碼行數:49,代碼來源:transforms.py


注:本文中的scipy.linalg.eigvals_banded方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。