當前位置: 首頁>>代碼示例>>Python>>正文


Python linalg.eigvals方法代碼示例

本文整理匯總了Python中scipy.linalg.eigvals方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.eigvals方法的具體用法?Python linalg.eigvals怎麽用?Python linalg.eigvals使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.linalg的用法示例。


在下文中一共展示了linalg.eigvals方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testMinrealSS

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvals [as 別名]
def testMinrealSS(self):
        """Test a minreal model reduction"""
        #A = [-2, 0.5, 0; 0.5, -0.3, 0; 0, 0, -0.1]
        A = [[-2, 0.5, 0], [0.5, -0.3, 0], [0, 0, -0.1]]
        #B = [0.3, -1.3; 0.1, 0; 1, 0]
        B = [[0.3, -1.3], [0.1, 0.], [1.0, 0.0]]
        #C = [0, 0.1, 0; -0.3, -0.2, 0]
        C = [[0., 0.1, 0.0], [-0.3, -0.2, 0.0]]
        #D = [0 -0.8; -0.3 0]
        D = [[0., -0.8], [-0.3, 0.]]
        # sys = ss(A, B, C, D)

        sys = StateSpace(A, B, C, D)
        sysr = sys.minreal()
        self.assertEqual(sysr.states, 2)
        self.assertEqual(sysr.inputs, sys.inputs)
        self.assertEqual(sysr.outputs, sys.outputs)
        np.testing.assert_array_almost_equal(
            eigvals(sysr.A), [-2.136154, -0.1638459]) 
開發者ID:python-control,項目名稱:python-control,代碼行數:21,代碼來源:minreal_test.py

示例2: check_stability

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvals [as 別名]
def check_stability(A, dt=True):
    """
    Checks the stability of the system.

    Args:
        A (np.ndarray): System plant matrix
        dt (bool): Discrete time system

    Returns:
        bool: True if the system is stable
    """
    eigvals = scalg.eigvals(A)
    if dt:
        criteria = np.abs(eigvals) > 1.
    else:
        criteria = np.real(eigvals) > 0.0

    if np.sum(criteria) >= 1.0:
        return True
    else:
        return False 
開發者ID:ImperialCollegeLondon,項目名稱:sharpy,代碼行數:23,代碼來源:librom.py

示例3: test_dare

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvals [as 別名]
def test_dare(self):
        A = array([[-0.6, 0],[-0.1, -0.4]])
        Q = array([[2, 1],[1, 0]])
        B = array([[2, 1],[0, 1]])
        R = array([[1, 0],[0, 1]])

        X,L,G = dare(A,B,Q,R)
        # print("The solution obtained is", X)
        Gref = solve(B.T.dot(X).dot(B) + R, B.T.dot(X).dot(A))
        assert_array_almost_equal(Gref, G)
        assert_array_almost_equal(
            A.T.dot(X).dot(A) - X -
            A.T.dot(X).dot(B).dot(Gref) + Q,
            zeros((2,2)))
        # check for stable closed loop
        lam = eigvals(A - B.dot(G))
        assert_array_less(abs(lam), 1.0)

        A = array([[1, 0],[-1, 1]])
        Q = array([[0, 1],[1, 1]])
        B = array([[1],[0]])
        R = 2

        X,L,G = dare(A,B,Q,R)
        # print("The solution obtained is", X)
        assert_array_almost_equal(
            A.T.dot(X).dot(A) - X -
            A.T.dot(X).dot(B) * solve(B.T.dot(X).dot(B) + R, B.T.dot(X).dot(A)) + Q, zeros((2,2)))
        assert_array_almost_equal(B.T.dot(X).dot(A) / (B.T.dot(X).dot(B) + R), G)
        # check for stable closed loop
        lam = eigvals(A - B.dot(G))
        assert_array_less(abs(lam), 1.0) 
開發者ID:python-control,項目名稱:python-control,代碼行數:34,代碼來源:mateqn_test.py

示例4: test_dare_g

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvals [as 別名]
def test_dare_g(self):
        A = array([[-0.6, 0],[-0.1, -0.4]])
        Q = array([[2, 1],[1, 3]])
        B = array([[1, 5],[2, 4]])
        R = array([[1, 0],[0, 1]])
        S = array([[1, 0],[2, 0]])
        E = array([[2, 1],[1, 2]])

        X,L,G = dare(A,B,Q,R,S,E)
        # print("The solution obtained is", X)
        Gref = solve(B.T.dot(X).dot(B) + R, B.T.dot(X).dot(A) + S.T)
        assert_array_almost_equal(Gref,G)
        assert_array_almost_equal(
            A.T.dot(X).dot(A) - E.T.dot(X).dot(E)
            - (A.T.dot(X).dot(B) + S).dot(Gref) + Q,
            zeros((2,2)) )
        # check for stable closed loop
        lam = eigvals(A - B.dot(G), E)
        assert_array_less(abs(lam), 1.0)

        A = array([[-0.6, 0],[-0.1, -0.4]])
        Q = array([[2, 1],[1, 3]])
        B = array([[1],[2]])
        R = 1
        S = array([[1],[2]])
        E = array([[2, 1],[1, 2]])

        X,L,G = dare(A,B,Q,R,S,E)
        # print("The solution obtained is", X)
        assert_array_almost_equal(
            A.T.dot(X).dot(A) - E.T.dot(X).dot(E) -
            (A.T.dot(X).dot(B) + S).dot(solve(B.T.dot(X).dot(B) + R, B.T.dot(X).dot(A) + S.T)) + Q,
            zeros((2,2)) )
        assert_array_almost_equal((B.T.dot(X).dot(A) + S.T) / (B.T.dot(X).dot(B) + R), G)
        # check for stable closed loop
        lam = eigvals(A - B.dot(G), E)
        assert_array_less(abs(lam), 1.0) 
開發者ID:python-control,項目名稱:python-control,代碼行數:39,代碼來源:mateqn_test.py

示例5: testMinrealBrute

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvals [as 別名]
def testMinrealBrute(self):
        for n, m, p in permutations(range(1,6), 3):
            s = matlab.rss(n, p, m)
            sr = s.minreal()
            if s.states > sr.states:
                self.nreductions += 1
            else:
                # Check to make sure that poles and zeros match

                # For poles, just look at eigenvalues of A
                np.testing.assert_array_almost_equal(
                    np.sort(eigvals(s.A)), np.sort(eigvals(sr.A)))

                # For zeros, need to extract SISO systems
                for i in range(m):
                    for j in range(p):
                        # Extract SISO dynamixs from input i to output j
                        s1 = matlab.ss(s.A, s.B[:,i], s.C[j,:], s.D[j,i])
                        s2 = matlab.ss(sr.A, sr.B[:,i], sr.C[j,:], sr.D[j,i])

                        # Check that the zeros match
                        # Note: sorting doesn't work => have to do the hard way
                        z1 = matlab.zero(s1)
                        z2 = matlab.zero(s2)

                        # Start by making sure we have the same # of zeros
                        self.assertEqual(len(z1), len(z2))

                        # Make sure all zeros in s1 are in s2
                        for zero in z1:
                            # Find the closest zero
                            self.assertAlmostEqual(min(abs(z2 - zero)), 0.)

                        # Make sure all zeros in s2 are in s1
                        for zero in z2:
                            # Find the closest zero
                            self.assertAlmostEqual(min(abs(z1 - zero)), 0.)

        # Make sure that the number of systems reduced is as expected
        # (Need to update this number if you change the seed at top of file)
        self.assertEqual(self.nreductions, 2) 
開發者ID:python-control,項目名稱:python-control,代碼行數:43,代碼來源:minreal_test.py

示例6: dare

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvals [as 別名]
def dare(A, B, Q, R, S=None, E=None, stabilizing=True):
    """ (X,L,G) = dare(A,B,Q,R) solves the discrete-time algebraic Riccati
    equation

        :math:`A^T X A - X - A^T X B (B^T X B + R)^{-1} B^T X A + Q = 0`

    where A and Q are square matrices of the same dimension. Further, Q
    is a symmetric matrix. The function returns the solution X, the gain
    matrix G = (B^T X B + R)^-1 B^T X A and the closed loop eigenvalues L,
    i.e., the eigenvalues of A - B G.

    (X,L,G) = dare(A,B,Q,R,S,E) solves the generalized discrete-time algebraic
    Riccati equation

        :math:`A^T X A - E^T X E - (A^T X B + S) (B^T X B + R)^{-1} (B^T X A + S^T) + Q = 0`

    where A, Q and E are square matrices of the same dimension. Further, Q and
    R are symmetric matrices. The function returns the solution X, the gain
    matrix :math:`G = (B^T X B + R)^{-1} (B^T X A + S^T)` and the closed loop
    eigenvalues L, i.e., the eigenvalues of A - B G , E.
    """
    if S is not None or E is not None or not stabilizing:
        return dare_old(A, B, Q, R, S, E, stabilizing)
    else:
        Rmat = _ssmatrix(R)
        Qmat = _ssmatrix(Q)
        X = solve_discrete_are(A, B, Qmat, Rmat)
        G = solve(B.T.dot(X).dot(B) + Rmat, B.T.dot(X).dot(A))
        L = eigvals(A - B.dot(G))
        return _ssmatrix(X), L, _ssmatrix(G) 
開發者ID:python-control,項目名稱:python-control,代碼行數:32,代碼來源:mateqn.py

示例7: _default_response_times

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvals [as 別名]
def _default_response_times(A, n):
    """Compute a reasonable set of time samples for the response time.

    This function is used by `impulse`, `impulse2`, `step` and `step2`
    to compute the response time when the `T` argument to the function
    is None.

    Parameters
    ----------
    A : array_like
        The system matrix, which is square.
    n : int
        The number of time samples to generate.

    Returns
    -------
    t : ndarray
        The 1-D array of length `n` of time samples at which the response
        is to be computed.
    """
    # Create a reasonable time interval.
    # TODO: This could use some more work.
    # For example, what is expected when the system is unstable?
    vals = linalg.eigvals(A)
    r = min(abs(real(vals)))
    if r == 0.0:
        r = 1.0
    tc = 1.0 / r
    t = linspace(0.0, 7 * tc, n)
    return t 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:32,代碼來源:ltisys.py

示例8: _default_response_times

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvals [as 別名]
def _default_response_times(A, n):
    """Compute a reasonable set of time samples for the response time.

    This function is used by `impulse`, `impulse2`, `step` and `step2`
    to compute the response time when the `T` argument to the function
    is None.

    Parameters
    ----------
    A : ndarray
        The system matrix, which is square.
    n : int
        The number of time samples to generate.

    Returns
    -------
    t : ndarray
        The 1-D array of length `n` of time samples at which the response
        is to be computed.
    """
    # Create a reasonable time interval.
    # TODO: This could use some more work.
    # For example, what is expected when the system is unstable?
    vals = linalg.eigvals(A)
    r = min(abs(real(vals)))
    if r == 0.0:
        r = 1.0
    tc = 1.0 / r
    t = linspace(0.0, 7 * tc, n)
    return t 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:32,代碼來源:ltisys.py

示例9: bench_eigvals

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvals [as 別名]
def bench_eigvals():
    numpy_eigvals = nl.eigvals
    scipy_eigvals = sl.eigvals
    print()
    print('           Finding matrix eigenvalues')
    print('      ==================================')
    print('      |    contiguous     |   non-contiguous ')
    print('----------------------------------------------')
    print(' size |  scipy  | numpy   |  scipy  | numpy ')

    for size,repeat in [(20,150),(100,7),(200,2)]:
        repeat *= 1
        print('%5s' % size, end=' ')
        sys.stdout.flush()

        a = random([size,size])

        print('| %6.2f ' % measure('scipy_eigvals(a)',repeat), end=' ')
        sys.stdout.flush()

        print('| %6.2f ' % measure('numpy_eigvals(a)',repeat), end=' ')
        sys.stdout.flush()

        a = a[-1::-1,-1::-1]  # turn into a non-contiguous array
        assert_(not a.flags['CONTIGUOUS'])

        print('| %6.2f ' % measure('scipy_eigvals(a)',repeat), end=' ')
        sys.stdout.flush()

        print('| %6.2f ' % measure('numpy_eigvals(a)',repeat), end=' ')
        sys.stdout.flush()

        print('   (secs for %s calls)' % (repeat)) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:35,代碼來源:bench_decom.py

示例10: test_ackermann_controllable

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvals [as 別名]
def test_ackermann_controllable():
    #
    A = haroldcompanion([1, 6, 5, 1])
    B = eye(3)[:, [-1]]
    p = [-10, -9, -8]
    K = ackermann((A, B), p)
    pa = eigvals(A - B@K)
    assert_array_almost_equal(array(p, dtype=complex), sort(pa)) 
開發者ID:ilayn,項目名稱:harold,代碼行數:10,代碼來源:test_static_ctrl_design.py

示例11: entropy

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvals [as 別名]
def entropy(state, base=2):
    r"""Calculate the von-Neumann entropy of a quantum state.

    The entropy :math:`S` is given by

    .. math:

        S(\rho) = - Tr[\rho \log(\rho)]

    Args:
        state (Statevector or DensityMatrix): a quantum state.
        base (int): the base of the logarithm [Default: 2].

    Returns:
        float: The von-Neumann entropy S(rho).

    Raises:
        QiskitError: if the input state is not a valid QuantumState.
    """
    # pylint: disable=assignment-from-no-return
    state = _format_state(state, validate=True)
    if isinstance(state, Statevector):
        return 0
    # Density matrix case
    evals = np.maximum(np.real(la.eigvals(state.data)), 0.)
    return shannon_entropy(evals, base=base) 
開發者ID:Qiskit,項目名稱:qiskit-terra,代碼行數:28,代碼來源:measures.py

示例12: run_hamiltonian

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvals [as 別名]
def run_hamiltonian(hessian, verbose=True):
    c = ClassicalHamiltonian()

    xopt = optimize.fmin(c.potential, c.initialposition(), xtol=1e-10)

    hessian.fun = c.potential
    hessian.full_output = True

    h, info = hessian(xopt)
    true_h = np.array([[5.23748385e-12, -2.61873829e-12],
                       [-2.61873829e-12, 5.23748385e-12]])
    eigenvalues = linalg.eigvals(h)
    normal_modes = c.normal_modes(eigenvalues)

    if verbose:
        print(c.potential([-0.5, 0.5]))
        print(c.potential([-0.5, 0.0]))
        print(c.potential([0.0, 0.0]))
        print(xopt)
        print('h', h)
        print('h-true_h', np.abs(h - true_h))
        print('error_estimate', info.error_estimate)

        print('eigenvalues', eigenvalues)
        print('normal_modes', normal_modes)
    return h, info.error_estimate, true_h 
開發者ID:pbrod,項目名稱:numdifftools,代碼行數:28,代碼來源:hamiltonian.py

示例13: adjacency_spectrum

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvals [as 別名]
def adjacency_spectrum(G, weight='weight'):
    """Return eigenvalues of the adjacency matrix of G.

    Parameters
    ----------
    G : graph
       A NetworkX graph

    weight : string or None, optional (default='weight')
       The edge data key used to compute each value in the matrix.
       If None, then each edge has weight 1.

    Returns
    -------
    evals : NumPy array
      Eigenvalues

    Notes
    -----
    For MultiGraph/MultiDiGraph, the edges weights are summed.
    See to_numpy_matrix for other options.

    See Also
    --------
    adjacency_matrix
    """
    from scipy.linalg import eigvals
    return eigvals(nx.adjacency_matrix(G,weight=weight).todense()) 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:30,代碼來源:spectrum.py

示例14: modularity_spectrum

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvals [as 別名]
def modularity_spectrum(G):
    """Return eigenvalues of the modularity matrix of G.

    Parameters
    ----------
    G : Graph
       A NetworkX Graph or DiGraph

    Returns
    -------
    evals : NumPy array
      Eigenvalues

    See Also
    --------
    modularity_matrix

    References
    ----------
    .. [1] M. E. J. Newman, "Modularity and community structure in networks",
       Proc. Natl. Acad. Sci. USA, vol. 103, pp. 8577-8582, 2006.
    """
    from scipy.linalg import eigvals
    if G.is_directed():
        return eigvals(nx.directed_modularity_matrix(G))
    else:
        return eigvals(nx.modularity_matrix(G))

# fixture for nose tests 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:31,代碼來源:spectrum.py

示例15: det_linear_buckling

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigvals [as 別名]
def det_linear_buckling(system):
    """
    Determine linear buckling by solving the generalized eigenvalue problem (k -λkg)x = 0.

    geometrical stiffness matrix at buckling point: Kg = f(N_max)
    1st order forces: N0
    Nmax = λN0
    Kg(Nmax) = λ(Kg(N0) = λKg0

    2nd order analysis is solved by:
    (K + λKg0)U = F

    We are interested in the point that there is nog additional load F and displacement U is possible.
    (K + λKg0)ΔU = ΔF = 0
    (K + λKg0) = 0

    Is the generalized eigenvalue problem:
    (A - λB)x = 0

    :param system: (SystemElements)
    :return: (flt) The factor the loads can be increased until the structure fails due to buckling.
    """
    system.solve()

    # buckling
    k0 = system.reduced_system_matrix * 1.0  # copy

    for el in system.element_map.values():
        el.compile_geometric_non_linear_stiffness_matrix()
        el.reset()

    system.solve()
    kg = system.reduced_system_matrix - k0
    # solve (k -λkg)x = 0

    eigenvalues = np.abs(linalg.eigvals(k0, kg))
    return np.min(eigenvalues) 
開發者ID:ritchie46,項目名稱:anaStruct,代碼行數:39,代碼來源:solver.py


注:本文中的scipy.linalg.eigvals方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。