當前位置: 首頁>>代碼示例>>Python>>正文


Python linalg.eigh方法代碼示例

本文整理匯總了Python中scipy.linalg.eigh方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.eigh方法的具體用法?Python linalg.eigh怎麽用?Python linalg.eigh使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.linalg的用法示例。


在下文中一共展示了linalg.eigh方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_newton_step_aug_hess

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigh [as 別名]
def get_newton_step_aug_hess(jac,hess):
    #lamb = 1.0 / alpha
    ah = np.zeros((hess.shape[0]+1,hess.shape[1]+1))
    ah[1:,0] = jac
    ah[0,1:] = jac.conj()
    ah[1:,1:] = hess

    eigval, eigvec = la.eigh(ah)
    idx = None
    for i in xrange(len(eigvec)):
        if abs(eigvec[0,i]) > 0.1 and eigval[i] > 0.0:
            idx = i
            break
    if idx is None:
        print("WARNING: ALL EIGENVALUESS in AUG-HESSIAN are NEGATIVE!!! ")
        return np.zeros_like(jac)
    deltax = eigvec[1:,idx] / eigvec[0,idx]
    return deltax 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:20,代碼來源:033-constrained_dft.py

示例2: test_jw_restrict_operator

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigh [as 別名]
def test_jw_restrict_operator(self):
        """Test the scheme for restricting JW encoded operators to number"""
        # Make a Hamiltonian that cares mostly about number of electrons
        n_qubits = 6
        target_electrons = 3
        penalty_const = 100.
        number_sparse = jordan_wigner_sparse(number_operator(n_qubits))
        bias_sparse = jordan_wigner_sparse(
            sum([FermionOperator(((i, 1), (i, 0)), 1.0) for i
                 in range(n_qubits)], FermionOperator()))
        hamiltonian_sparse = penalty_const * (
            number_sparse - target_electrons *
            scipy.sparse.identity(2**n_qubits)).dot(
            number_sparse - target_electrons *
            scipy.sparse.identity(2**n_qubits)) + bias_sparse

        restricted_hamiltonian = jw_number_restrict_operator(
            hamiltonian_sparse, target_electrons, n_qubits)
        true_eigvals, _ = eigh(hamiltonian_sparse.A)
        test_eigvals, _ = eigh(restricted_hamiltonian.A)

        self.assertAlmostEqual(norm(true_eigvals[:20] - test_eigvals[:20]),
                               0.0) 
開發者ID:quantumlib,項目名稱:OpenFermion,代碼行數:25,代碼來源:_sparse_tools_test.py

示例3: test_spectral_embedding_unnormalized

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigh [as 別名]
def test_spectral_embedding_unnormalized():
    # Test that spectral_embedding is also processing unnormalized laplacian
    # correctly
    random_state = np.random.RandomState(36)
    data = random_state.randn(10, 30)
    sims = rbf_kernel(data)
    n_components = 8
    embedding_1 = spectral_embedding(sims,
                                     norm_laplacian=False,
                                     n_components=n_components,
                                     drop_first=False)

    # Verify using manual computation with dense eigh
    laplacian, dd = csgraph.laplacian(sims, normed=False,
                                      return_diag=True)
    _, diffusion_map = eigh(laplacian)
    embedding_2 = diffusion_map.T[:n_components]
    embedding_2 = _deterministic_vector_sign_flip(embedding_2).T

    assert_array_almost_equal(embedding_1, embedding_2) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:22,代碼來源:test_spectral_embedding.py

示例4: _eigen_decompose_covariance

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigh [as 別名]
def _eigen_decompose_covariance(self, X, y, sqrt_sw):
        """Eigendecomposition of X^T.X, used when n_samples > n_features."""
        n_samples, n_features = X.shape
        cov = np.empty((n_features + 1, n_features + 1), dtype=X.dtype)
        cov[:-1, :-1], X_mean = self._compute_covariance(X, sqrt_sw)
        if not self.fit_intercept:
            cov = cov[:-1, :-1]
        # to emulate centering X with sample weights,
        # ie removing the weighted average, we add a column
        # containing the square roots of the sample weights.
        # by centering, it is orthogonal to the other columns
        # when all samples have the same weight we add a column of 1
        else:
            cov[-1] = 0
            cov[:, -1] = 0
            cov[-1, -1] = sqrt_sw.dot(sqrt_sw)
        nullspace_dim = max(0, X.shape[1] - X.shape[0])
        s, V = linalg.eigh(cov)
        # remove eigenvalues and vectors in the null space of X^T.X
        s = s[nullspace_dim:]
        V = V[:, nullspace_dim:]
        return X_mean, s, V, X 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:24,代碼來源:ridge.py

示例5: test_eigsh_for_k_greater

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigh [as 別名]
def test_eigsh_for_k_greater():
    # Test eigsh() for k beyond limits.
    A_sparse = diags([1, -2, 1], [-1, 0, 1], shape=(4, 4))  # sparse
    A = generate_matrix(4, sparse=False)
    M_dense = generate_matrix_symmetric(4, pos_definite=True)
    M_sparse = generate_matrix_symmetric(4, pos_definite=True, sparse=True)
    M_linop = aslinearoperator(M_dense)
    eig_tuple1 = eigh(A, b=M_dense)
    eig_tuple2 = eigh(A, b=M_sparse)

    with suppress_warnings() as sup:
        sup.filter(RuntimeWarning)

        assert_equal(eigsh(A, M=M_dense, k=4), eig_tuple1)
        assert_equal(eigsh(A, M=M_dense, k=5), eig_tuple1)
        assert_equal(eigsh(A, M=M_sparse, k=5), eig_tuple2)

        # M as LinearOperator
        assert_raises(TypeError, eigsh, A, M=M_linop, k=4)

        # Test 'A' for different types
        assert_raises(TypeError, eigsh, aslinearoperator(A), k=4)
        assert_raises(TypeError, eigsh, A_sparse, M=M_dense, k=4) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:25,代碼來源:test_arpack.py

示例6: excitedStateManifold

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigh [as 別名]
def excitedStateManifold(self,gL,gI,I,A_hyp_coeff,B_hyp_coeff,Bfield):
        """Function to produce the excited state manifold"""
        dp = int(3*(2*S+1)*(2*I+1))  # total dimension of matrix
        # The actual value of FS is unimportant.
        FS = self.atom.FS # Fine structure splitting
        Ap = A_hyp_coeff
        Bp = B_hyp_coeff
        # Add P-term fine and hyperfine interactions
        if Bp==0.0:
            P_StateHamiltonian=FS*Hfs(1.0,S,I)+FS*identity(dp)+Ap*Hhfs(1.0,S,I)
        if Bp!=0.0:
            P_StateHamiltonian=FS*Hfs(1.0,S,I)-(FS/2.0)*identity(dp)+Ap*Hhfs(1.0,S,I)
            P_StateHamiltonian+=Bp*Bbhfs(1.0,S,I) # add p state quadrupole
        E=muB*(Bfield*1.0e-4)/(hbar*2.0*pi*1.0e6)
        # Add magnetic interaction
        P_StateHamiltonian+=E*(gL*lz(1.0,S,I)+gs*sz(1.0,S,I)+gI*Iz(1.0,S,I))
        ep=eigh(P_StateHamiltonian)
        EigenValues=ep[0].real
        EigenVectors=ep[1]
        stateManifold=append([EigenValues],EigenVectors,axis=0)
        sortedManifold=sorted(transpose(stateManifold),key=(lambda i:i[0]))
        return sortedManifold, EigenValues 
開發者ID:jameskeaveney,項目名稱:ElecSus,代碼行數:24,代碼來源:EigenSystem.py

示例7: Bmatrix

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigh [as 別名]
def Bmatrix(C):
    """
    Calculate a matrix which is effectively the square root of the correlation matrix C


    Parameters
    ----------
    C : 2d array
        A covariance matrix

    Returns
    -------
    B : 2d array
        A matrix B such the B.dot(B') = inv(C)
    """
    # this version of finding the square root of the inverse matrix
    # suggested by Cath Trott
    L, Q = eigh(C)
    # force very small eigenvalues to have some minimum non-zero value
    minL = 1e-9*L[-1]
    L[L < minL] = minL
    S = np.diag(1 / np.sqrt(L))
    B = Q.dot(S)
    return B 
開發者ID:PaulHancock,項目名稱:Aegean,代碼行數:26,代碼來源:fitting.py

示例8: _visibilities

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigh [as 別名]
def _visibilities(self, X):

        visi_noisy_all = []
        for band_count in range(self.num_freq):
            # Estimate the covariance matrix and extract off-diagonal entries
            fn = self.freq_bins[band_count]
            energy = np.var(X[:, fn, :], axis=0)
            I = np.where(energy > self.stft_noise_margin * self.stft_noise_floor)
            R = cov_mtx_est(X[:, fn, I[0]])

            # impose low rank constraint
            if self.low_rank_cleaning:
                w, vl = la.eigh(R)
                w = np.abs(w)
                k = self.num_src
                sigma = w.min()  # estimate the noise by minimum statistics
                Rhat = np.dot(vl[:,-k:] * (w[None,-k:] - sigma), np.conj(vl[:,-k:].T))
            else:
                Rhat = R

            visi_noisy = extract_off_diag(Rhat)
            visi_noisy_all.append(visi_noisy)

        return visi_noisy_all 
開發者ID:LCAV,項目名稱:pyroomacoustics,代碼行數:26,代碼來源:frida.py

示例9: _cov_eigen

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigh [as 別名]
def _cov_eigen(self, X):
        """
        Perform direct computation of covariance matrix eigen{values,vectors}.

        Parameters
        ----------
        X : WRITEME

        Returns
        -------
        WRITEME
        """
        v, W = linalg.eigh(self.cov(X.T))
        # The resulting components are in *ascending* order of eigenvalue, and
        # W contains eigenvectors in its *columns*, so we simply reverse both.
        return v[::-1], W[:, ::-1] 
開發者ID:zchengquan,項目名稱:TextDetector,代碼行數:18,代碼來源:pca.py

示例10: _sample_gaussian

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigh [as 別名]
def _sample_gaussian(mean, covar, covariance_type='diag', n_samples=1,
                     random_state=None):
    rng = check_random_state(random_state)
    n_dim = len(mean)
    rand = rng.randn(n_dim, n_samples)
    if n_samples == 1:
        rand.shape = (n_dim,)

    if covariance_type == 'spherical':
        rand *= np.sqrt(covar)
    elif covariance_type == 'diag':
        rand = np.dot(np.diag(np.sqrt(covar)), rand)
    else:
        s, U = linalg.eigh(covar)
        s.clip(0, out=s)  # get rid of tiny negatives
        np.sqrt(s, out=s)
        U *= s
        rand = np.dot(U, rand)

    return (rand.T + mean).T 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:22,代碼來源:gmm.py

示例11: test_linear_operator

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigh [as 別名]
def test_linear_operator():
    """Test linear operator."""
    n_times, n_atoms, n_times_atom = 64, 16, 32
    n_times_valid = n_times - n_times_atom + 1

    rng = check_random_state(42)
    ds = rng.randn(n_atoms, n_times_atom)
    some_sample_weights = np.abs(rng.randn(n_times))

    for sample_weights in [None, some_sample_weights]:
        gbc = partial(gram_block_circulant, ds=ds, n_times_valid=n_times_valid,
                      sample_weights=sample_weights)
        DTD_full = gbc(method='full')
        DTD_scipy = gbc(method='scipy')
        DTD_custom = gbc(method='custom')

        z = rng.rand(DTD_full.shape[1])
        assert np.allclose(DTD_full.dot(z), DTD_scipy.dot(z))
        assert np.allclose(DTD_full.dot(z), DTD_custom.dot(z))

        # test power iterations with linear operator
        mu, _ = linalg.eigh(DTD_full)
        for DTD in [DTD_full, DTD_scipy, DTD_custom]:
            mu_hat = power_iteration(DTD)
            assert np.allclose(np.max(mu), mu_hat, rtol=1e-2) 
開發者ID:alphacsc,項目名稱:alphacsc,代碼行數:27,代碼來源:test_learn_d_z.py

示例12: __init__

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigh [as 別名]
def __init__(self,L,d,T,name = None):
        if name is None:
            name = "Ising_l"+str(L)+"_d" +str(d)+"_t"+str(T)
        super(Ising,self).__init__([L**d],name)
        self.beta = 1.0
        self.lattice = Hypercube(L, d, 'periodic')
        self.K = self.lattice.Adj/T
    
        w, v = eigh(self.K)    
        offset = 0.1-w.min()
        self.K += np.eye(w.size)*offset
        sign, logdet = np.linalg.slogdet(self.K)
        #print (sign)
        #print (0.5*self.nvars[0] *(np.log(4.)-offset - np.log(2.*np.pi)) - 0.5*logdet)
        Kinv = torch.from_numpy(inv(self.K)).to(torch.float32)
        self.register_buffer("Kinv",Kinv) 
開發者ID:li012589,項目名稱:NeuralRG,代碼行數:18,代碼來源:ising.py

示例13: test_eigh1

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigh [as 別名]
def test_eigh1():
    np.random.seed(1204982)
    a = np.random.rand(10, 10)
    # Symmetrize
    a = a + a.T
    ac = a.copy()
    xs, vs = sl.eigh(a)
    x, v = eigh(a)
    assert np.allclose(xs, x)
    assert np.allclose(vs, v)
    assert np.allclose(a, ac)

    x, v = eigh_dc(a)
    assert np.allclose(xs, x)
    assert np.allclose(vs, v)
    assert np.allclose(a, ac)

    x, v = eigh_qr(a)
    assert np.allclose(xs, x)
    assert np.allclose(vs, v)
    assert np.allclose(a, ac) 
開發者ID:zerothi,項目名稱:sisl,代碼行數:23,代碼來源:test_eig.py

示例14: proj_choi_to_completely_positive

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigh [as 別名]
def proj_choi_to_completely_positive(choi: np.ndarray, check_finite: bool = True) -> np.ndarray:
    """
    Projects the Choi representation of a process into the nearest Choi matrix in the space of
    completely positive maps.

    Equation 8 of [PGD]_

    :param choi: Choi representation of a process
    :param check_finite: check that the input matrices contain only finite numbers.
    :return: closest Choi matrix in the space of completely positive maps
    """
    hermitian_choi = (choi + choi.conj().T) / 2  # enforce Hermiticity
    evals, v = linalg.eigh(hermitian_choi, check_finite=check_finite)
    evals[evals < 0] = 0  # enforce completely positive by removing negative eigenvalues
    diag = np.diag(evals)
    return v @ diag @ v.conj().T 
開發者ID:rigetti,項目名稱:forest-benchmarking,代碼行數:18,代碼來源:project_superoperators.py

示例15: proj_choi_to_trace_non_increasing

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eigh [as 別名]
def proj_choi_to_trace_non_increasing(choi: np.ndarray) -> np.ndarray:
    """
    Projects the Choi matrix of a process into the space of trace non-increasing maps.

    Equation 33 of [PGD]_

    :param choi: Choi representation of a process
    :return: Choi representation of the projected trace non-increasing process
    """
    dim = int(np.sqrt(choi.shape[0]))

    # trace out the output Hilbert space
    pt = partial_trace(choi, dims=[dim, dim], keep=[0])

    hermitian = (pt + pt.conj().T) / 2  # enforce Hermiticity
    d, v = linalg.eigh(hermitian)
    d[d > 1] = 1  # enforce trace preserving
    D = np.diag(d)
    projection = v @ D @ v.conj().T

    trace_increasing_part = np.kron((pt - projection) / dim, np.eye(dim))

    return choi - trace_increasing_part 
開發者ID:rigetti,項目名稱:forest-benchmarking,代碼行數:25,代碼來源:project_superoperators.py


注:本文中的scipy.linalg.eigh方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。