本文整理匯總了Python中scipy.linalg.eig方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.eig方法的具體用法?Python linalg.eig怎麽用?Python linalg.eig使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.linalg
的用法示例。
在下文中一共展示了linalg.eig方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: compare_solutions
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eig [as 別名]
def compare_solutions(A,B,m):
n = A.shape[0]
numpy.random.seed(0)
V = rand(n,m)
X = linalg.orth(V)
eigs,vecs = lobpcg(A, X, B=B, tol=1e-5, maxiter=30)
eigs.sort()
#w,v = symeig(A,B)
w,v = eig(A,b=B)
w.sort()
assert_almost_equal(w[:int(m/2)],eigs[:int(m/2)],decimal=2)
#from pylab import plot, show, legend, xlabel, ylabel
#plot(arange(0,len(w[:m])),w[:m],'bx',label='Results by symeig')
#plot(arange(0,len(eigs)),eigs,'r+',label='Results by lobpcg')
#legend()
#xlabel(r'Eigenvalue $i$')
#ylabel(r'$\lambda_i$')
#show()
示例2: test_eigs_for_k_greater
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eig [as 別名]
def test_eigs_for_k_greater():
# Test eigs() for k beyond limits.
A_sparse = diags([1, -2, 1], [-1, 0, 1], shape=(4, 4)) # sparse
A = generate_matrix(4, sparse=False)
M_dense = np.random.random((4, 4))
M_sparse = generate_matrix(4, sparse=True)
M_linop = aslinearoperator(M_dense)
eig_tuple1 = eig(A, b=M_dense)
eig_tuple2 = eig(A, b=M_sparse)
with suppress_warnings() as sup:
sup.filter(RuntimeWarning)
assert_equal(eigs(A, M=M_dense, k=3), eig_tuple1)
assert_equal(eigs(A, M=M_dense, k=4), eig_tuple1)
assert_equal(eigs(A, M=M_dense, k=5), eig_tuple1)
assert_equal(eigs(A, M=M_sparse, k=5), eig_tuple2)
# M as LinearOperator
assert_raises(TypeError, eigs, A, M=M_linop, k=3)
# Test 'A' for different types
assert_raises(TypeError, eigs, aslinearoperator(A), k=3)
assert_raises(TypeError, eigs, A_sparse, k=3)
示例3: dlqr
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eig [as 別名]
def dlqr(a, b, q, r):
""" Get the feedback controls from linearized system at the current time step
for a discrete time system Ax+Bu
find the infinite horizon optimal feedback controller
to steer the system to the origin
with
u = -K*x
"""
x = np.matrix(sLa.solve_discrete_are(a, b, q, r))
k = np.matrix(sLa.inv(b.T * x * b + r) * (b.T * x * a))
eigVals, eigVecs = sLa.eig(a - b * k)
return np.asarray(k), np.asarray(x), eigVals
示例4: null
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eig [as 別名]
def null(A,tol=1e-6):
ee, ev = la.eig(A)
#for E,V in zip(ee,ev.T):
# print 'Eigs:',abs(E), '\t', E#, '\t', V
#print '\n'
z = list(zip(ee,ev.T))
zs = sorted(z, key=lambda f: abs(f[0])) # sort by absolute value of eigenvectors
ees, evs = list(zip(*zs))
#for E,V in zip(ee,ev):
# print abs(E), '\t', E, '::', V
if abs(ees[0]<tol):
return evs[0].T
else:
print('No null eigenvector found! List of eigenvalules:')
for E,V in zip(ee,ev.T):
print(('Eigs:',abs(E), '\t', E, '\n\t', V))
print('\n')
return 0
示例5: test_sampler
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eig [as 別名]
def test_sampler(sampler, H, steps=1000):
"""Runs the sampler on the given energy
Prints a bunch of statistics about how well it's doing
returns t_obs, distr_obs
"""
order = len(H) * 2
smp = sampler(order, energies=H)
smp.sample(steps)
t_obs = smp.get_transition_matrix()
print "Predicted distribution: {} \n".format(smp.prd_distr)
print "Observed distribution: {} \n".format(smp.get_distr())
print "Sampling error (L1): {} \n".format(smp.sampling_err())
print "Observed transition matrix: \n {} \n".format(t_obs)
print "Eigenspectrum of observed transition matrix: \n"
eigs = rectify_evecs(eig(t_obs, left=True, right=False))
pprint_eigs(eigs)
return t_obs, smp.get_distr()
示例6: rectify_evecs
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eig [as 別名]
def rectify_evecs(eigs):
"""
eigs: output of linalg.eig
normalizes evecs by L1 norm, truncates small complex components,
ensures things are positive
"""
evecs = eigs[1].T
l1_norm = np.abs(evecs).sum(axis=1)
norm_evecs = evecs / l1_norm[:, np.newaxis]
real_evals = [np.around(np.real_if_close(l), decimals=5) for l in eigs[0]]
real_evecs = []
for v in norm_evecs:
real_v = np.real_if_close(v)
if (real_v < 0).all():
real_v *= -1
real_evecs.append(real_v)
# skip sorting for now: argsort is pain because numpy will typecase to complex arr
# desc_idx = np.argsort(real_evals)[::-1]
# return real_evals[desc_idx], real_evecs[desc_idx]
return real_evals, real_evecs
示例7: compute_separatrices
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eig [as 別名]
def compute_separatrices(Xss, Js, func, x_range, y_range, t=50, n_sample=500, eps=1e-6):
ret = []
for i, x in enumerate(Xss):
print(x)
J = Js[i]
w, v = eig(J)
I_stable = np.where(np.real(w) < 0)[0]
print(I_stable)
for j in I_stable: # I_unstable
u = np.real(v[j])
u = u / np.linalg.norm(u)
print("u=%f, %f" % (u[0], u[1]))
# Parameters for building separatrix
T = np.linspace(0, t, n_sample)
# all_sep_a, all_sep_b = None, None
# Build upper right branch of separatrix
ab_upper = odeint(lambda x, _: -func(x), x + eps * u, T)
# Build lower left branch of separatrix
ab_lower = odeint(lambda x, _: -func(x), x - eps * u, T)
sep = np.vstack((ab_lower[::-1], ab_upper))
ret.append(sep)
ret = clip_curves(ret, [x_range, y_range])
return ret
示例8: pca_projection
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eig [as 別名]
def pca_projection(C, L):
"""solve the problem size(C) = NxN, size(W) = NxL. max_W trace( W' C W ) : W' W = I
Arguments
---------
C: (ndarrya) The matrix of
L: (int) The number of Eigenvalues
Return
------
W: The L largest Eigenvalues
"""
V, U = eig(C)
eig_idx = np.argsort(V).tolist()
eig_idx.reverse()
W = U.T[eig_idx[0:L]].T
return W
示例9: dmd_exact
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eig [as 別名]
def dmd_exact(x_data, y_data):
# decompose x
u, s, v = lin.svd(x_data, full_matrices=False, overwrite_a=True, check_finite=False, lapack_driver='gesvd')
# construct reduced matrix
reduced_matrix = u.T @ y_data @ v.T @ np.diag(np.reciprocal(s))
# find eigenvalues
eigenvalues, eigenvectors = lin.eig(reduced_matrix, overwrite_a=True, check_finite=False)
# sort eigenvalues
ind = np.argsort(eigenvalues)[::-1]
dmd_eigenvalues = eigenvalues[ind]
# compute modes
dmd_modes = y_data @ v.T @ np.diag(np.reciprocal(s)) @ eigenvectors[:, ind] @ np.diag(
np.reciprocal(dmd_eigenvalues))
return dmd_eigenvalues, dmd_modes
示例10: _method_2
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eig [as 別名]
def _method_2(data, num_pcs=None):
"""Compute OPCA when num_observations <= num_dimensions."""
data = np.nan_to_num(data - nanmean(data, axis=0))
T = data.shape[0]
tmp = np.dot(data, data.T)
corr_offset = np.zeros(tmp.shape)
corr_offset[1:] = tmp[:-1]
corr_offset[:-1] += tmp[1:]
if num_pcs is None:
eivals, eivects = eig(corr_offset)
else:
eivals, eivects = eigs(corr_offset, num_pcs, which='LR')
eivals = np.real(eivals)
eivects = np.real(eivects)
idx = np.argsort(-eivals) # sort the eigenvectors and eigenvalues
eivals = old_div(eivals[idx], (2. * (T - 1)))
eivects = eivects[:, idx]
transformed_eivects = np.dot(data.T, eivects)
for i in range(transformed_eivects.shape[1]): # normalize the eigenvectors
transformed_eivects[:, i] /= np.linalg.norm(transformed_eivects[:, i])
return eivals, transformed_eivects, np.dot(data, transformed_eivects)
示例11: gevd
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eig [as 別名]
def gevd(x1,x2,no_pairs):
'''Solve generalized eigenvalue decomposition
Keyword arguments:
x1 -- numpy array of size [NO_channels, NO_samples]
x2 -- numpy array of size [NO_channels, NO_samples]
no_pairs -- number of pairs of eigenvectors to be returned
Return: numpy array of 2*No_pairs eigenvectors
'''
ev,vr= linalg.eig(x1,x2,right=True)
evAbs = np.abs(ev)
sort_indices = np.argsort(evAbs)
chosen_indices = np.zeros(2*no_pairs).astype(int)
chosen_indices[0:no_pairs] = sort_indices[0:no_pairs]
chosen_indices[no_pairs:2*no_pairs] = sort_indices[-no_pairs:]
w = vr[:,chosen_indices] # ignore nan entries
return w
示例12: symeig
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eig [as 別名]
def symeig(mtxA, mtxB=None, eigenvectors=True, select=None):
import scipy.linalg as sla
if select is None:
if np.iscomplexobj(mtxA):
if mtxB is None:
fun = sla.get_lapack_funcs('heev', arrays=(mtxA,))
else:
fun = sla.get_lapack_funcs('hegv', arrays=(mtxA,))
else:
if mtxB is None:
fun = sla.get_lapack_funcs('syev', arrays=(mtxA,))
else:
fun = sla.get_lapack_funcs('sygv', arrays=(mtxA,))
## print fun
if mtxB is None:
out = fun(mtxA)
else:
out = fun(mtxA, mtxB)
out = out[1], out[0], out[2]
## print w
## print v
## print info
## from symeig import symeig
## print symeig( mtxA, mtxB )
else:
out = sla.eig(mtxA, mtxB, right=eigenvectors)
w = out[0]
ii = np.argsort(w)
w = w[slice(*select)]
if eigenvectors:
v = out[1][:,ii]
v = v[:,slice(*select)]
out = w, v, 0
else:
out = w, 0
return out[:-1]
示例13: getFiedlerVectorDense
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eig [as 別名]
def getFiedlerVectorDense(self):
"""
Returns the (dense)Fiedler vector of the higher-order network. The Fiedler
vector can be used for a spectral bisectioning of the network.
"""
# NOTE: The Laplacian is transposed for the sparse case to get the left
# NOTE: eigenvalue.
L = self.getLaplacianMatrix()
# convert to dense matrix and transpose again to have the untransposed
# laplacian again.
w, v = _la.eig(L.todense().transpose(), right=False, left=True)
return v[:,_np.argsort(_np.absolute(w))][:,1]
示例14: compare_solutions
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eig [as 別名]
def compare_solutions(A,B,m):
n = A.shape[0]
np.random.seed(0)
V = rand(n,m)
X = linalg.orth(V)
eigs,vecs = lobpcg(A, X, B=B, tol=1e-5, maxiter=30)
eigs.sort()
w,v = eig(A,b=B)
w.sort()
assert_almost_equal(w[:int(m/2)],eigs[:int(m/2)],decimal=2)
示例15: pagerank_weighted_scipy
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import eig [as 別名]
def pagerank_weighted_scipy(graph, damping=0.85):
adjacency_matrix = build_adjacency_matrix(graph)
probability_matrix = build_probability_matrix(graph)
# Suppress deprecation warnings from numpy.
# See https://github.com/summanlp/textrank/issues/57
import warnings
with warnings.catch_warnings():
from numpy import VisibleDeprecationWarning
warnings.filterwarnings("ignore", category=VisibleDeprecationWarning)
warnings.filterwarnings("ignore", category=PendingDeprecationWarning)
pagerank_matrix = damping * adjacency_matrix.todense() + (1 - damping) * probability_matrix
vals, vecs = eig(pagerank_matrix, left=True, right=False)
return process_results(graph, vecs)