當前位置: 首頁>>代碼示例>>Python>>正文


Python linalg.det方法代碼示例

本文整理匯總了Python中scipy.linalg.det方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.det方法的具體用法?Python linalg.det怎麽用?Python linalg.det使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.linalg的用法示例。


在下文中一共展示了linalg.det方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: f_value_wilks_lambda

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import det [as 別名]
def f_value_wilks_lambda(ER, EF, dfnum, dfden, a, b):
    """Calculation of Wilks lambda F-statistic for multivarite data, per
    Maxwell & Delaney p.657.
    """
    if isinstance(ER, (int, float)):
        ER = array([[ER]])
    if isinstance(EF, (int, float)):
        EF = array([[EF]])
    lmbda = linalg.det(EF) / linalg.det(ER)
    if (a-1)**2 + (b-1)**2 == 5:
        q = 1
    else:
        q = np.sqrt(((a-1)**2*(b-1)**2 - 2) / ((a-1)**2 + (b-1)**2 - 5))
    n_um = (1 - lmbda**(1.0/q))*(a-1)*(b-1)
    d_en = lmbda**(1.0/q) / (n_um*q - 0.5*(a-1)*(b-1) + 1)
    return n_um / d_en 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:18,代碼來源:stats.py

示例2: test_compute_log_det_cholesky

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import det [as 別名]
def test_compute_log_det_cholesky():
    n_features = 2
    rand_data = RandomData(np.random.RandomState(0))

    for covar_type in COVARIANCE_TYPE:
        covariance = rand_data.covariances[covar_type]

        if covar_type == 'full':
            predected_det = np.array([linalg.det(cov) for cov in covariance])
        elif covar_type == 'tied':
            predected_det = linalg.det(covariance)
        elif covar_type == 'diag':
            predected_det = np.array([np.prod(cov) for cov in covariance])
        elif covar_type == 'spherical':
            predected_det = covariance ** n_features

        # We compute the cholesky decomposition of the covariance matrix
        expected_det = _compute_log_det_cholesky(_compute_precision_cholesky(
            covariance, covar_type), covar_type, n_features=n_features)
        assert_array_almost_equal(expected_det, - .5 * np.log(predected_det)) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:22,代碼來源:test_gaussian_mixture.py

示例3: _params_zyz

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import det [as 別名]
def _params_zyz(mat):
        """Return the euler angles and phase for the ZYZ basis."""
        # We rescale the input matrix to be special unitary (det(U) = 1)
        # This ensures that the quaternion representation is real
        coeff = la.det(mat)**(-0.5)
        phase = -np.angle(coeff)
        su_mat = coeff * mat  # U in SU(2)
        # OpenQASM SU(2) parameterization:
        # U[0, 0] = exp(-i(phi+lambda)/2) * cos(theta/2)
        # U[0, 1] = -exp(-i(phi-lambda)/2) * sin(theta/2)
        # U[1, 0] = exp(i(phi-lambda)/2) * sin(theta/2)
        # U[1, 1] = exp(i(phi+lambda)/2) * cos(theta/2)
        theta = 2 * math.atan2(abs(su_mat[1, 0]), abs(su_mat[0, 0]))
        phiplambda = 2 * np.angle(su_mat[1, 1])
        phimlambda = 2 * np.angle(su_mat[1, 0])
        phi = (phiplambda + phimlambda) / 2.0
        lam = (phiplambda - phimlambda) / 2.0
        return theta, phi, lam, phase 
開發者ID:Qiskit,項目名稱:qiskit-terra,代碼行數:20,代碼來源:one_qubit_decompose.py

示例4: check_one_qubit_euler_angles

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import det [as 別名]
def check_one_qubit_euler_angles(self, operator, basis='U3',
                                     tolerance=1e-12,
                                     phase_equal=False):
        """Check euler_angles_1q works for the given unitary"""
        decomposer = OneQubitEulerDecomposer(basis)
        with self.subTest(operator=operator):
            target_unitary = operator.data
            decomp_unitary = Operator(decomposer(operator)).data
            if not phase_equal:
                target_unitary *= la.det(target_unitary)**(-0.5)
                decomp_unitary *= la.det(decomp_unitary)**(-0.5)
            maxdist = np.max(np.abs(target_unitary - decomp_unitary))
            if not phase_equal and maxdist > 0.1:
                maxdist = np.max(np.abs(target_unitary + decomp_unitary))
            self.assertTrue(np.abs(maxdist) < tolerance, "Worst distance {}".format(maxdist))

    # U3 basis 
開發者ID:Qiskit,項目名稱:qiskit-terra,代碼行數:19,代碼來源:test_synthesis.py

示例5: __init__

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import det [as 別名]
def __init__(self, sigma, mu, seed=42):
        self.sigma = sigma
        self.mu = mu
        if not (len(mu.shape) == 1):
            raise Exception('mu has shape ' + str(mu.shape) +
                            ' (it should be a vector)')

        self.sigma_inv = solve(self.sigma, N.identity(mu.shape[0]),
                               sym_pos=True)
        self.L = cholesky(self.sigma)

        self.s_rng = make_theano_rng(seed, which_method='normal')

        #Compute logZ
        #log Z = log 1/( (2pi)^(-k/2) |sigma|^-1/2 )
        # = log 1 - log (2pi^)(-k/2) |sigma|^-1/2
        # = 0 - log (2pi)^(-k/2) - log |sigma|^-1/2
        # = (k/2) * log(2pi) + (1/2) * log |sigma|
        k = float(self.mu.shape[0])
        self.logZ = 0.5 * (k * N.log(2. * N.pi) + N.log(det(sigma))) 
開發者ID:zchengquan,項目名稱:TextDetector,代碼行數:22,代碼來源:mnd.py

示例6: f_value_wilks_lambda

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import det [as 別名]
def f_value_wilks_lambda(ER, EF, dfnum, dfden, a, b):
    """Calculation of Wilks lambda F-statistic for multivarite data, per
    Maxwell & Delaney p.657.
    """
    if isinstance(ER, (int, float)):
        ER = array([[ER]])
    if isinstance(EF, (int, float)):
        EF = array([[EF]])
    lmbda = linalg.det(EF) / linalg.det(ER)
    if (a-1)**2 + (b-1)**2 == 5:
        q = 1
    else:
        q = np.sqrt(((a-1)**2*(b-1)**2 - 2) / ((a-1)**2 + (b-1)**2 - 5))

    n_um = (1 - lmbda**(1.0/q))*(a-1)*(b-1)
    d_en = lmbda**(1.0/q) / (n_um*q - 0.5*(a-1)*(b-1) + 1)
    return n_um / d_en 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:19,代碼來源:stats.py

示例7: berry_phase

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import det [as 別名]
def berry_phase(h,nk=20,kpath=None):
  """ Calculates the Berry phase of a Hamiltonian"""
  if h.dimensionality==0: raise
  elif h.dimensionality == 1:
    ks = np.linspace(0.,1.,nk,endpoint=False) # list of kpoints
  elif h.dimensionality > 1: # you must provide a kpath
      if kpath is None: 
          print("You must provide a k-path")
          raise # error
      ks = kpath # continue
      nk = len(kpath) # redefine
  else: raise # otherwise
  hkgen = h.get_hk_gen() # get Hamiltonian generator
  wf0 = occupied_states(hkgen,ks[0]) # get occupied states, first k-point
  wfold = wf0.copy() # copy
  m = np.matrix(np.identity(len(wf0))) # initialize as the identity matrix
  for ik in range(1,len(ks)): # loop over k-points, except first one
    wf = occupied_states(hkgen,ks[ik])  # get waves
    m = m@uij(wfold,wf)   # get the uij   and multiply
    wfold = wf.copy() # this is the new old
  m = m@uij(wfold,wf0)   # last one
  d = lg.det(m) # calculate determinant
  phi = np.arctan2(d.imag,d.real)
  open("BERRY_PHASE.OUT","w").write(str(phi/np.pi)+"\n")
  return phi # return Berry phase 
開發者ID:joselado,項目名稱:quantum-honeycomp,代碼行數:27,代碼來源:topology.py

示例8: berry_curvature

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import det [as 別名]
def berry_curvature(h,k,dk=0.01,window=None,max_waves=None):
  """ Calculates the Berry curvature of a 2d hamiltonian"""
  if h.dimensionality != 2: raise # only for 2d
  k = np.array([k[0],k[1]]) 
  dx = np.array([dk,0.])
  dy = np.array([0.,dk])
# get the function that returns the occ states
  occf = occ_states_generator(h,k,window=window,max_waves=max_waves)  
  # get the waves
#  print("Doing k-point",k)
  wf1 = occf(k-dx-dy) 
  wf2 = occf(k+dx-dy) 
  wf3 = occf(k+dx+dy) 
  wf4 = occf(k-dx+dy) 
  dims = [len(wf1),len(wf2),len(wf3),len(wf4)] # number of vectors
  if max(dims)!=min(dims): # check that the dimensions are fine 
#    print("WARNING, skipping this k-point",k)
    return 0.0 # if different number of vectors
  # get the uij  
  m = uij(wf1,wf2)@uij(wf2,wf3)@uij(wf3,wf4)@uij(wf4,wf1)
  d = lg.det(m) # calculate determinant
  phi = np.arctan2(d.imag,d.real)/(4.*dk*dk)
  return phi 
開發者ID:joselado,項目名稱:quantum-honeycomp,代碼行數:25,代碼來源:topology.py

示例9: is_rotation_matrix

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import det [as 別名]
def is_rotation_matrix(mat, show_diff=False):
    from scipy.linalg import det, norm

    dim = mat.shape[0]
    if dim != mat.shape[1]:
        return False

    determ = det(mat)
    right_handed = (np.abs(determ - 1.) < 1E-10)
    orthonorm_diff = mat * mat.T - np.eye(dim)
    diff_norm = norm(orthonorm_diff, 2)
    orthonormal = (diff_norm < 1E-10)
    if not right_handed or not orthonormal:
        if show_diff:
            print('matrix S:\n', mat)
            print('det(S): ', determ)
            print('S*S.T - eye:\n', orthonorm_diff)
            print('2-norm of difference: ', diff_norm)
        return False
    return True 
開發者ID:odlgroup,項目名稱:odl,代碼行數:22,代碼來源:utility.py

示例10: logsqrtdet

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import det [as 別名]
def logsqrtdet(self):
    # Sigma = L^T L -- but be careful: only the lower triangle and
    # diagonal of L are actually initialized; the upper triangle is
    # garbage.
    L, _lower = self._cholesky

    # det Sigma = det L^T L = det L^T det L = (det L)^2.  Since L is
    # triangular, its determinant is the product of its diagonal.  To
    # compute log sqrt(det Sigma) = log det L, we sum the logs of its
    # diagonal.
    return np.sum(np.log(np.diag(L))) 
開發者ID:probcomp,項目名稱:cgpm,代碼行數:13,代碼來源:mvnormal.py

示例11: logpdf

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import det [as 別名]
def logpdf(X, Mu, Sigma):
  """Multivariate normal log pdf."""
  # This is the multivariate normal log pdf for an array X of n
  # outputs, an array Mu of n means, and an n-by-n positive-definite
  # covariance matrix Sigma.  The direct-space density is:
  #
  #     P(X | Mu, Sigma)
  #       = ((2 pi)^n det Sigma)^(-1/2)
  #         exp((-1/2) (X - Mu)^T Sigma^-1 (X - Mu)),
  #
  # We want this in log-space, so we have
  #
  #     log P(X | Mu, Sigma)
  #     = (-1/2) (X - Mu)^T Sigma^-1 (X - Mu) - log ((2 pi)^n det Sigma)^(1/2)
  #     = (-1/2) (X - Mu)^T Sigma^-1 (X - Mu)
  #         - (n/2) log (2 pi) - (1/2) log det Sigma.
  #
  n = len(X)
  assert X.shape == (n,)
  assert Mu.shape == (n,)
  assert Sigma.shape == (n, n)
  assert np.all(np.isfinite(X))
  assert np.all(np.isfinite(Mu))
  assert np.all(np.isfinite(Sigma))

  X_ = X - Mu
  covf = _covariance_factor(Sigma)

  logp = -np.dot(X_.T, covf.solve(X_)/2.)
  logp -= (n/2.)*np.log(2*np.pi)
  logp -= covf.logsqrtdet()

  # Convert 1x1 matrix to float.
  return float(logp) 
開發者ID:probcomp,項目名稱:cgpm,代碼行數:36,代碼來源:mvnormal.py

示例12: _compute_covariance

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import det [as 別名]
def _compute_covariance(self):
        """Computes the covariance matrix for each Gaussian kernel using
        covariance_factor().
        """
        self.factor = self.covariance_factor()
        # Cache covariance and inverse covariance of the data
        if not hasattr(self, '_data_inv_cov'):
            self._data_covariance = atleast_2d(np.cov(self.dataset, rowvar=1,
                                               bias=False))
            self._data_inv_cov = linalg.inv(self._data_covariance)

        self.covariance = self._data_covariance * self.factor**2
        self.inv_cov = self._data_inv_cov / self.factor**2
        self._norm_factor = sqrt(linalg.det(2*pi*self.covariance)) * self.n 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:16,代碼來源:kde.py

示例13: mdet

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import det [as 別名]
def mdet(self):
        return linalg.det(self.m) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:4,代碼來源:linalg_decomp_1.py

示例14: mlogdet

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import det [as 別名]
def mlogdet(self):
        return np.log(linalg.det(self.m)) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:4,代碼來源:linalg_decomp_1.py

示例15: calcWeight

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import det [as 別名]
def calcWeight( jac ):

  n = jac.shape

  if n[0] == n[1]:
    return abs(det(jac))
  elif n[0] == 2 and n[1] == 1:
    return sqrt(sum(sum(jac*jac)))

#------------------------------------------------------------------------------
#
#------------------------------------------------------------------------------ 
開發者ID:jjcremmers,項目名稱:PyFEM,代碼行數:14,代碼來源:shapeFunctions.py


注:本文中的scipy.linalg.det方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。