本文整理匯總了Python中scipy.linalg.circulant方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.circulant方法的具體用法?Python linalg.circulant怎麽用?Python linalg.circulant使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.linalg
的用法示例。
在下文中一共展示了linalg.circulant方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _process_masks
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import circulant [as 別名]
def _process_masks(self, mask_obs, self_mask=False):
'''
mask_obs will be a (n_agent, n_object) boolean matrix. If the mask is over non-agent
objects then we do nothing. If the mask is over other agents (self_mask is True),
then we permute each row such that the mask is consistent with the circulant
permutation used for self observations
'''
new_mask = mask_obs.copy()
if self_mask:
assert np.all(new_mask.shape == np.array((self.n_agents, self.n_agents)))
# Permute each row to the right by one more than the previous
# E.g., [[1,2],[3,4]] -> [[1,2],[4,3]]
idx = circulant(np.arange(self.n_agents))
new_mask = new_mask[np.arange(self.n_agents)[:, None], idx]
new_mask = new_mask[:, 1:] # Remove self observation
return new_mask
示例2: toeplitz_strang_circ_approx
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import circulant [as 別名]
def toeplitz_strang_circ_approx(r, matrix=False):
'''
Circulant approximation to a symetric Toeplitz matrix
by Gil Strang
Parameters
----------
r: ndarray
the first row of the symmetric Toeplitz matrix
matrix: bool, optional
if True, the full symetric Toeplitz matrix is returned,
otherwise, only the first column
'''
n = r.shape[0]
c = r.copy()
m = n // 2 if n % 2 == 0 else (n - 1) // 2
c[-m:] = r[m:0:-1]
if matrix:
return la.circulant(c)
else:
return c
示例3: circ_mul_v
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import circulant [as 別名]
def circ_mul_v(circ,v,eigs=None):
''' multiply a circulant matrix A by multi vector v.
Args:
circ (ndarray): representation of the multilevel circulant matrix A, i.e.
the first column of A in proper shape.
v (ndarray): vector to be multiplied. Should be reshaped to the same shape
as circ. Should be the same reshape order (column first/row first) as circ.
Returns:
result of multiplication.
'''
if use_gpu > 0:
import cupy
xp = cupy.get_array_module(circ)
else:
xp = np
if eigs is None:
eigs = circ_eigs(circ)
tmp = xp.real(xp.fft.ifft2(xp.fft.fft2(v,norm='ortho')*eigs,norm='ortho'))
if xp is cupy:
return tmp.astype(xp.float32)
else:
return tmp
示例4: observation
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import circulant [as 別名]
def observation(self, obs):
new_obs = {}
for k, v in obs.items():
if 'mask' in k:
new_obs[k] = self._process_masks(obs[k], self_mask=(k in self.keys_self))
elif k in self.keys_self:
new_obs[k + '_self'] = obs[k]
new_obs[k] = obs[k][circulant(np.arange(self.n_agents))]
new_obs[k] = new_obs[k][:, 1:, :] # Remove self observation
elif k in self.keys_copy:
new_obs[k] = obs[k]
else:
new_obs[k] = np.tile(v, self.n_agents).reshape([v.shape[0], self.n_agents, v.shape[1]]).transpose((1, 0, 2))
return new_obs
示例5: make_pd
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import circulant [as 別名]
def make_pd(start, n):
"""Deterministically create a positive definite matrix."""
x = np.tril(linalg.circulant(np.arange(start, start + n)))
return np.dot(x, x.T)
示例6: getFDMatrix
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import circulant [as 別名]
def getFDMatrix(N, order, dx):
if order == 1:
stencil = [-1.0, 1.0]
zero_pos = 2
coeff = 1.0
elif order == 2:
stencil = [1.0, -4.0, 3.0]
coeff = 1.0 / 2.0
zero_pos = 3
elif order == 3:
stencil = [1.0, -6.0, 3.0, 2.0]
coeff = 1.0 / 6.0
zero_pos = 3
elif order == 4:
stencil = [-5.0, 30.0, -90.0, 50.0, 15.0]
coeff = 1.0 / 60.0
zero_pos = 4
elif order == 5:
stencil = [3.0, -20.0, 60.0, -120.0, 65.0, 12.0]
coeff = 1.0 / 60.0
zero_pos = 5
else:
print("Order " + order + " not implemented.")
first_col = np.zeros(N)
# Because we need to specific first column (not row) in circulant, flip stencil array
first_col[0:np.size(stencil)] = np.flipud(stencil)
# Circulant shift of coefficient column so that entry number zero_pos becomes first entry
first_col = np.roll(first_col, -np.size(stencil) + zero_pos, axis=0)
return sp.csc_matrix(coeff * (1.0 / dx) * LA.circulant(first_col))
示例7: getUpwindMatrix
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import circulant [as 別名]
def getUpwindMatrix(N, dx):
#stencil = [-1.0, 1.0]
#zero_pos = 2
#coeff = 1.0
#stencil = [1.0, -4.0, 3.0]
#coeff = 1.0/2.0
#zero_pos = 3
#stencil = [1.0, -6.0, 3.0, 2.0]
#coeff = 1.0/6.0
#zero_pos = 3
#stencil = [-5.0, 30.0, -90.0, 50.0, 15.0]
#coeff = 1.0/60.0
#zero_pos = 4
stencil = [3.0, -20.0, 60.0, -120.0, 65.0, 12.0]
coeff = 1.0/60.0
zero_pos = 5
first_col = np.zeros(N)
# Because we need to specific first column (not row) in circulant, flip stencil array
first_col[0:np.size(stencil)] = np.flipud(stencil)
# Circulant shift of coefficient column so that entry number zero_pos becomes first entry
first_col = np.roll(first_col, -np.size(stencil)+zero_pos, axis=0)
return sp.csc_matrix( coeff*(1.0/dx)*la.circulant(first_col) )
示例8: getHorizontalDx
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import circulant [as 別名]
def getHorizontalDx(N, dx, order):
if order == 1:
stencil = [-1.0, 1.0]
zero_pos = 2
coeff = 1.0
elif order == 2:
stencil = [1.0, -4.0, 3.0]
coeff = 1.0 / 2.0
zero_pos = 3
elif order == 3:
stencil = [1.0, -6.0, 3.0, 2.0]
coeff = 1.0 / 6.0
zero_pos = 3
elif order == 4:
stencil = [-5.0, 30.0, -90.0, 50.0, 15.0]
coeff = 1.0 / 60.0
zero_pos = 4
elif order == 5:
stencil = [3.0, -20.0, 60.0, -120.0, 65.0, 12.0]
coeff = 1.0 / 60.0
zero_pos = 5
else:
print("Order " + order + " not implemented.")
first_col = np.zeros(N)
# Because we need to specific first column (not row) in circulant, flip stencil array
first_col[0:np.size(stencil)] = np.flipud(stencil)
# Circulant shift of coefficient column so that entry number zero_pos becomes first entry
first_col = np.roll(first_col, -np.size(stencil) + zero_pos, axis=0)
return sp.csc_matrix(coeff * (1.0 / dx) * la.circulant(first_col))
示例9: getUpwindMatrix
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import circulant [as 別名]
def getUpwindMatrix(N, dx, order):
if order == 1:
stencil = [-1.0, 1.0]
zero_pos = 2
coeff = 1.0
elif order == 2:
stencil = [1.0, -4.0, 3.0]
coeff = 1.0 / 2.0
zero_pos = 3
elif order == 3:
stencil = [1.0, -6.0, 3.0, 2.0]
coeff = 1.0 / 6.0
zero_pos = 3
elif order == 4:
stencil = [-5.0, 30.0, -90.0, 50.0, 15.0]
coeff = 1.0 / 60.0
zero_pos = 4
elif order == 5:
stencil = [3.0, -20.0, 60.0, -120.0, 65.0, 12.0]
coeff = 1.0 / 60.0
zero_pos = 5
else:
sys.exit('Order ' + str(order) + ' not implemented')
first_col = np.zeros(N)
# Because we need to specific first column (not row) in circulant, flip stencil array
first_col[0:np.size(stencil)] = np.flipud(stencil)
# Circulant shift of coefficient column so that entry number zero_pos becomes first entry
first_col = np.roll(first_col, -np.size(stencil) + zero_pos, axis=0)
return sp.csc_matrix(coeff * (1.0 / dx) * la.circulant(first_col))
示例10: _setup
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import circulant [as 別名]
def _setup(self, config):
torch.manual_seed(config['seed'])
self.model = ButterflyProduct(size=config['size'],
complex=False,
fixed_order=config['fixed_order'],
softmax_fn=config['softmax_fn'])
if (not config['fixed_order']) and config['softmax_fn'] == 'softmax':
self.semantic_loss_weight = config['semantic_loss_weight']
self.optimizer = optim.Adam(self.model.parameters(), lr=config['lr'])
self.n_steps_per_epoch = config['n_steps_per_epoch']
size = config['size']
# Need to transpose as dct acts on rows of matrix np.eye, not columns
n = size
np.random.seed(0)
x = np.random.randn(n)
C = circulant(x)
self.target_matrix = torch.tensor(C, dtype=torch.float)
arange_ = np.arange(size)
dct_perm = np.concatenate((arange_[::2], arange_[::-2]))
br_perm = bitreversal_permutation(size)
assert config['perm'] in ['id', 'br', 'dct']
if config['perm'] == 'id':
self.perm = torch.arange(size)
elif config['perm'] == 'br':
self.perm = br_perm
elif config['perm'] == 'dct':
self.perm = torch.arange(size)[dct_perm][br_perm]
else:
assert False, 'Wrong perm in config'
示例11: toeplitz_opt_circ_approx
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import circulant [as 別名]
def toeplitz_opt_circ_approx(r, matrix=False):
'''
Optimal circulant approximation of a symmetric Toeplitz matrix
by Tony F. Chan
Parameters
----------
r: ndarray
the first row of the symmetric Toeplitz matrix
matrix: bool, optional
if True, the full symetric Toeplitz matrix is returned,
otherwise, only the first column
'''
n = r.shape[0]
r_rev = np.zeros(r.shape)
r_rev[1:] = r[:0:-1]
i = np.arange(n)
c = (i * r_rev + (n - i) * r) / n
c[1:] = c[:0:-1]
if matrix:
return la.circulant(c)
else:
return c
示例12: circ_eigs
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import circulant [as 別名]
def circ_eigs(circ,dtype=np.complex64):
''' calculate eigenvalues of multilevel circulant matrix A
Args:
circ (ndarray): representation of the multilevel circulant matrix A, i.e.
the first column of A in proper shape.
Returns:
eigenvalues of A.
'''
if use_gpu > 0:
import cupy
xp = cupy.get_array_module(circ)
else:
xp = np
return xp.fft.fft2(circ,norm='ortho').astype(dtype)*xp.sqrt(np.prod(circ.shape))
示例13: embed_toep2circ
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import circulant [as 別名]
def embed_toep2circ(toep,v=None):
'''embed toeplitz matrix to circulant matrix.
Args:
toep (ndarray): representation of multilevel toeplitz matrix, i.e.
the first column of A in proper shape.
v (ndarray): embed a vector together with toep.
Returns:
representation of embedded multilevel circulant matrix and embedded vector.
'''
if use_gpu > 0:
import cupy
xp = cupy.get_array_module(toep)
else:
xp = np
# circ = xp.zeros((2*xp.array(toep.shape)).astype(xp.int))
circ = xp.zeros((2*toep.shape[0],2*toep.shape[1]))
s = []
for idim in range(toep.ndim):
s.append(slice(0,toep.shape[idim]))
circ[tuple(s)] = toep
if not v is None:
if v.ndim == toep.ndim:
resv = xp.zeros_like(circ)
resv[tuple(s)] = v
else:
resv = xp.zeros((v.shape[0],*circ.shape))
resv[tuple(slice(None),*s)] = v
for idim in range(toep.ndim):
s[idim] = slice(toep.shape[idim]+1,None)
s2 = s.copy()
s2[idim] = slice(toep.shape[idim]-1,0,-1)
circ[tuple(s)] = circ[tuple(s2)]
s[idim] = slice(None)
if v is None:
return circ
else:
return circ,resv
示例14: gradient
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import circulant [as 別名]
def gradient(f, x=None, dx=1, axis=-1):
"""
Return the gradient of 1 or 2-dimensional array.
The gradient is computed using central differences in the interior
and first differences at the boundaries.
Irregular sampling is supported (it isn't supported by np.gradient)
Parameters
----------
f : 1d or 2d numpy array
Input array.
x : array_like, optional
Points where the function f is evaluated. It must be of the same
length as ``f.shape[axis]``.
If None, regular sampling is assumed (see dx)
dx : float, optional
If `x` is None, spacing given by `dx` is assumed. Default is 1.
axis : int, optional
The axis along which the difference is taken.
Returns
-------
out : array_like
Returns the gradient along the given axis.
Notes
-----
To-Do: implement smooth noise-robust differentiators for use on experimental data.
http://www.holoborodko.com/pavel/numerical-methods/numerical-derivative/smooth-low-noise-differentiators/
"""
if x is None:
x = np.arange(f.shape[axis]) * dx
else:
assert x.shape[0] == f.shape[axis]
I = np.zeros(f.shape[axis])
I[:2] = np.array([0, -1])
I[-1] = 1
I = circulant(I)
I[0, 0] = -1
I[-1, -1] = 1
I[0, -1] = 0
I[-1, 0] = 0
H = np.zeros((f.shape[axis], 1))
H[1:-1, 0] = x[2:] - x[:-2]
H[0] = x[1] - x[0]
H[-1] = x[-1] - x[-2]
if axis == 0:
return np.dot(I / H, f)
else:
return np.dot(I / H, f.T).T
示例15: named_target_matrix
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import circulant [as 別名]
def named_target_matrix(name, size):
"""
Parameter:
name: name of the target matrix
Return:
target_matrix: (n, n) numpy array for real matrices or (n, n, 2) for complex matrices.
"""
if name == 'dft':
return LA.dft(size, scale='sqrtn')[:, :, None].view('float64')
elif name == 'idft':
return np.ascontiguousarray(LA.dft(size, scale='sqrtn').conj().T)[:, :, None].view('float64')
elif name == 'dft2':
size_sr = int(math.sqrt(size))
matrix = np.fft.fft2(np.eye(size_sr**2).reshape(-1, size_sr, size_sr), norm='ortho').reshape(-1, size_sr**2)
# matrix1d = LA.dft(size_sr, scale='sqrtn')
# assert np.allclose(np.kron(m1d, m1d), matrix)
# return matrix[:, :, None].view('float64')
from butterfly.utils import bitreversal_permutation
br_perm = bitreversal_permutation(size_sr)
br_perm2 = np.arange(size_sr**2).reshape(size_sr, size_sr)[br_perm][:, br_perm].reshape(-1)
matrix = np.ascontiguousarray(matrix[:, br_perm2])
return matrix[:, :, None].view('float64')
elif name == 'dct':
# Need to transpose as dct acts on rows of matrix np.eye, not columns
# return dct(np.eye(size), norm='ortho').T
return dct(np.eye(size)).T / math.sqrt(size)
elif name == 'dst':
return dst(np.eye(size)).T / math.sqrt(size)
elif name == 'hadamard':
return LA.hadamard(size) / math.sqrt(size)
elif name == 'hadamard2':
size_sr = int(math.sqrt(size))
matrix1d = LA.hadamard(size_sr) / math.sqrt(size_sr)
return np.kron(matrix1d, matrix1d)
elif name == 'b2':
size_sr = int(math.sqrt(size))
import torch
from butterfly import Block2x2DiagProduct
b = Block2x2DiagProduct(size_sr)
matrix1d = b(torch.eye(size_sr)).t().detach().numpy()
return np.kron(matrix1d, matrix1d)
elif name == 'convolution':
np.random.seed(0)
x = np.random.randn(size)
return LA.circulant(x) / math.sqrt(size)
elif name == 'hartley':
return hartley_matrix(size) / math.sqrt(size)
elif name == 'haar':
return haar_matrix(size, normalized=True) / math.sqrt(size)
elif name == 'legendre':
grid = np.linspace(-1, 1, size + 2)[1:-1]
return legendre.legvander(grid, size - 1).T / math.sqrt(size)
elif name == 'hilbert':
H = hilbert_matrix(size)
return H / np.linalg.norm(H, 2)
elif name == 'randn':
np.random.seed(0)
return np.random.randn(size, size) / math.sqrt(size)
else:
assert False, 'Target matrix name not recognized or implemented'