本文整理匯總了Python中scipy.linalg.cho_factor方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.cho_factor方法的具體用法?Python linalg.cho_factor怎麽用?Python linalg.cho_factor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.linalg
的用法示例。
在下文中一共展示了linalg.cho_factor方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: mvn_loglike
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import cho_factor [as 別名]
def mvn_loglike(x, sigma):
'''loglike multivariate normal
assumes x is 1d, (nobs,) and sigma is 2d (nobs, nobs)
brute force from formula
no checking of correct inputs
use of inv and log-det should be replace with something more efficient
'''
#see numpy thread
#Sturla: sqmahal = (cx*cho_solve(cho_factor(S),cx.T).T).sum(axis=1)
sigmainv = linalg.inv(sigma)
logdetsigma = np.log(np.linalg.det(sigma))
nobs = len(x)
llf = - np.dot(x, np.dot(sigmainv, x))
llf -= nobs * np.log(2 * np.pi)
llf -= logdetsigma
llf *= 0.5
return llf
示例2: do_sampleF2
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import cho_factor [as 別名]
def do_sampleF2(Y, X, current_F1, log_theta):
log_theta_sigma2, log_theta_lengthscale, log_theta_lambda = unpack_log_theta(log_theta)
n = Y.shape[0]
K_F2 = covariance_function(current_F1, current_F1, log_theta_sigma2[1], log_theta_lengthscale[1]) + np.eye(n) * 1e-9
K_Y = K_F2 + np.eye(n) * np.exp(log_theta_lambda)
L_K_Y, lower_K_Y = linalg.cho_factor(K_Y, lower=True)
K_inv_Y = linalg.cho_solve((L_K_Y, lower_K_Y), Y)
mu = np.dot(K_F2, K_inv_Y)
K_inv_K = linalg.cho_solve((L_K_Y, lower_K_Y), K_F2)
Sigma = K_F2 - np.dot(K_F2, K_inv_K)
L_Sigma = linalg.cholesky(Sigma, lower=True)
proposed_F2 = mu + np.dot(L_Sigma, np.random.normal(0.0, 1.0, [n, 1]))
return proposed_F2
## Unpack the vector of parameters into their three elements
示例3: inv
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import cho_factor [as 別名]
def inv(self, logdet=False):
if self.ndim == 1:
inv = 1.0 / self
if logdet:
return inv, np.sum(np.log(self))
else:
return inv
else:
try:
cf = sl.cho_factor(self)
inv = sl.cho_solve(cf, np.identity(cf[0].shape[0]))
if logdet:
ld = 2.0 * np.sum(np.log(np.diag(cf[0])))
except np.linalg.LinAlgError:
u, s, v = np.linalg.svd(self)
inv = np.dot(u / s, u.T)
if logdet:
ld = np.sum(np.log(s))
if logdet:
return inv, ld
else:
return inv
示例4: standardized_forecasts_error
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import cho_factor [as 別名]
def standardized_forecasts_error(self):
"""
Standardized forecast errors
"""
if self._standardized_forecasts_error is None:
from scipy import linalg
self._standardized_forecasts_error = np.zeros(
self.forecasts_error.shape, dtype=self.dtype)
for t in range(self.forecasts_error_cov.shape[2]):
if self.nmissing[t] > 0:
self._standardized_forecasts_error[:, t] = np.nan
if self.nmissing[t] < self.k_endog:
mask = ~self.missing[:, t].astype(bool)
F = self.forecasts_error_cov[np.ix_(mask, mask, [t])]
upper, _ = linalg.cho_factor(F[:, :, 0])
self._standardized_forecasts_error[mask, t] = (
linalg.solve_triangular(
upper, self.forecasts_error[mask, t]
)
)
return self._standardized_forecasts_error
示例5: log_likelihood
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import cho_factor [as 別名]
def log_likelihood(self, p):
p = self.to_params(p)
v = self.rvs(p)
res = self.vs - v - p['mu']
cov = p['nu']*p['nu']*np.diag(self.dvs*self.dvs)
cov += generate_covariance(self.ts, p['sigma'], p['tau'])
cfactor = sl.cho_factor(cov)
cc, lower = cfactor
n = self.ts.shape[0]
return -0.5*n*np.log(2.0*np.pi) - np.sum(np.log(np.diag(cc))) - 0.5*np.dot(res, sl.cho_solve(cfactor, res))
示例6: __init__
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import cho_factor [as 別名]
def __init__(self, data):
self._data = np.atleast_2d(data)
self._mean = np.mean(data, axis=0)
self._cov = None
if self.data.shape[0] > 1:
try:
self._cov = np.cov(data.T)
# Try factoring now to see if regularization is needed
la.cho_factor(self._cov)
except la.LinAlgError:
self._cov = oas_cov(data)
self._set_bandwidth()
# store transformation variables for drawing random values
alphas = np.std(data, axis=0)
ms = 1./alphas
m_i, m_j = np.meshgrid(ms, ms)
ms = m_i * m_j
self._draw_cov = ms * self._kernel_cov
self._scale_fac = alphas
示例7: _set_bandwidth
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import cho_factor [as 別名]
def _set_bandwidth(self):
r"""
Use Scott's rule to set the kernel bandwidth:
.. math::
\mathcal{K} = n^{-1/(d+4)} \Sigma^{1/2}
Also store Cholesky decomposition for later.
"""
if self.size > 0 and self._cov is not None:
self._kernel_cov = self._cov * self.size ** (-2/(self.ndim + 4))
# Used to evaluate PDF with cho_solve()
self._cho_factor = la.cho_factor(self._kernel_cov)
# Make sure the estimated PDF integrates to 1.0
self._lognorm = self.ndim/2 * np.log(2*np.pi) + np.log(self.size) +\
np.sum(np.log(np.diag(self._cho_factor[0])))
else:
self._lognorm = -np.inf
示例8: _evaluate_point_logpdf
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import cho_factor [as 別名]
def _evaluate_point_logpdf(args):
"""
Evaluate the Gaussian KDE at a given point `p`. This lives outside the KDE method to allow for
parallelization using :mod:`multipocessing`. Since :func:`map` only allows single-argument
functions, the following arguments to be packed into a single tuple.
:param p:
The point to evaluate the KDE at.
:param data:
The `(N, ndim)`-shaped array of data used to construct the KDE.
:param cho_factor:
A Cholesky decomposition of the kernel covariance matrix.
"""
point, data, cho_factor = args
# Use Cholesky decomposition to avoid direct inversion of covariance matrix
diff = data - point
tdiff = la.cho_solve(cho_factor, diff.T, check_finite=False).T
diff *= tdiff
# Work in the log to avoid large numbers
return logsumexp(-np.sum(diff, axis=1)/2)
示例9: __init__
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import cho_factor [as 別名]
def __init__(self, Sigma):
self._cholesky = la.cho_factor(Sigma)
示例10: mvn_nloglike_obs
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import cho_factor [as 別名]
def mvn_nloglike_obs(x, sigma):
'''loglike multivariate normal
assumes x is 1d, (nobs,) and sigma is 2d (nobs, nobs)
brute force from formula
no checking of correct inputs
use of inv and log-det should be replace with something more efficient
'''
#see numpy thread
#Sturla: sqmahal = (cx*cho_solve(cho_factor(S),cx.T).T).sum(axis=1)
#Still wasteful to calculate pinv first
sigmainv = linalg.inv(sigma)
cholsigmainv = linalg.cholesky(sigmainv)
#2 * np.sum(np.log(np.diagonal(np.linalg.cholesky(A)))) #Dag mailinglist
# logdet not needed ???
#logdetsigma = 2 * np.sum(np.log(np.diagonal(cholsigmainv)))
x_whitened = np.dot(cholsigmainv, x)
#sigmainv = linalg.cholesky(sigma)
logdetsigma = np.log(np.linalg.det(sigma))
sigma2 = 1. # error variance is included in sigma
llike = 0.5 * (np.log(sigma2) - 2.* np.log(np.diagonal(cholsigmainv))
+ (x_whitened**2)/sigma2
+ np.log(2*np.pi))
return llike, (x_whitened**2)
示例11: _make_AB_matrices
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import cho_factor [as 別名]
def _make_AB_matrices(self):
# Vertical
n = self.num_stencils_vertical
cov_zz = self.cov_matrix_vertical[:n,:n]
cov_xz = self.cov_matrix_vertical[n:, :n]
cov_zx = self.cov_matrix_vertical[:n, n:]
cov_xx = self.cov_matrix_vertical[n:, n:]
cf = linalg.cho_factor(cov_zz)
inv_cov_zz = linalg.cho_solve(cf, np.eye(cov_zz.shape[0]))
self.A_vertical = cov_xz.dot(inv_cov_zz)
BBt = cov_xx - self.A_vertical.dot(cov_zx)
U, S, Vt = np.linalg.svd(BBt)
L = np.sqrt(S[:self.input_grid.dims[0]])
self.B_vertical = U * L
# Horizontal
n = self.num_stencils_horizontal
cov_zz = self.cov_matrix_horizontal[:n,:n]
cov_xz = self.cov_matrix_horizontal[n:, :n]
cov_zx = self.cov_matrix_horizontal[:n, n:]
cov_xx = self.cov_matrix_horizontal[n:, n:]
cf = linalg.cho_factor(cov_zz)
inv_cov_zz = linalg.cho_solve(cf, np.eye(cov_zz.shape[0]))
self.A_horizontal = cov_xz.dot(inv_cov_zz)
BBt = cov_xx - self.A_horizontal.dot(cov_zx)
U, S, Vt = np.linalg.svd(BBt)
L = np.sqrt(S[:self.input_grid.dims[1]])
self.B_horizontal = U * L
示例12: makeAMatrix
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import cho_factor [as 別名]
def makeAMatrix(self):
"""
Calculates the "A" matrix, that uses the existing data to find a new
component of the new phase vector.
"""
# Cholsky solve can fail - if so do brute force inversion
try:
cf = linalg.cho_factor(self.cov_mat_zz)
inv_cov_zz = linalg.cho_solve(cf, numpy.identity(self.cov_mat_zz.shape[0]))
except linalg.LinAlgError:
raise linalg.LinAlgError("Could not invert Covariance Matrix to for A and B Matrices. Try with a larger pixel scale")
self.A_mat = self.cov_mat_xz.dot(inv_cov_zz)
示例13: log_p_Y_given_F1
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import cho_factor [as 別名]
def log_p_Y_given_F1(Y, F1, log_theta):
log_theta_sigma2, log_theta_lengthscale, log_theta_lambda = unpack_log_theta(log_theta)
n = Y.shape[0]
K_Y = covariance_function(F1, F1, log_theta_sigma2[1], log_theta_lengthscale[1]) + np.eye(n) * np.exp(log_theta_lambda)
L_K_Y, lower_K_Y = linalg.cho_factor(K_Y, lower=True)
nu = linalg.solve_triangular(L_K_Y, Y, lower=True)
return -np.sum(np.log(np.diagonal(L_K_Y))) - 0.5 * np.dot(nu.transpose(), nu)
## Elliptical Slice Sampling to sample from the posterior over latent variables at layer 1 (the latent variables at layer 2 are integrated out analytically)
示例14: rake_mvdr_filters
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import cho_factor [as 別名]
def rake_mvdr_filters(self, source, interferer, R_n, delay=0.03, epsilon=5e-3):
"""
Compute the time-domain filters of the minimum variance distortionless
response beamformer.
"""
H = build_rir_matrix(
self.R,
(source, interferer),
self.Lg,
self.fs,
epsilon=epsilon,
unit_damping=True,
)
L = H.shape[1] // 2
# the constraint vector
kappa = int(delay * self.fs)
h = H[:, kappa]
# We first assume the sample are uncorrelated
R_xx = np.dot(H[:, :L], H[:, :L].T)
K_nq = np.dot(H[:, L:], H[:, L:].T) + R_n
# Compute the TD filters
C = la.cho_factor(R_xx + K_nq, check_finite=False)
g_val = la.cho_solve(C, h)
g_val /= np.inner(h, g_val)
self.filters = g_val.reshape((self.M, self.Lg))
# compute and return SNR
num = np.inner(g_val.T, np.dot(R_xx, g_val))
denom = np.inner(np.dot(g_val.T, K_nq), g_val)
return num / denom
示例15: solve
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import cho_factor [as 別名]
def solve(self, other):
if other.ndim == 1:
Nx = np.array(other / self.N)
elif other.ndim == 2:
Nx = np.array(other / self.N[:, None])
UNx = np.dot(self.U.T, Nx)
Sigma = np.diag(1 / self.J) + np.dot(self.U.T, self.U / self.N[:, None])
cf = sl.cho_factor(Sigma)
if UNx.ndim == 1:
tmp = np.dot(self.U, sl.cho_solve(cf, UNx)) / self.N
else:
tmp = np.dot(self.U, sl.cho_solve(cf, UNx)) / self.N[:, None]
return Nx - tmp