當前位置: 首頁>>代碼示例>>Python>>正文


Python linalg.LinAlgError方法代碼示例

本文整理匯總了Python中scipy.linalg.LinAlgError方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.LinAlgError方法的具體用法?Python linalg.LinAlgError怎麽用?Python linalg.LinAlgError使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.linalg的用法示例。


在下文中一共展示了linalg.LinAlgError方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _covariance_factor

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import LinAlgError [as 別名]
def _covariance_factor(Sigma):
  # Assume it is positive-definite and try Cholesky decomposition.
  try:
    return Covariance_Cholesky(Sigma)
  except la.LinAlgError:
    pass

  # XXX In the past, we tried LU decomposition if, owing to
  # floating-point rounding error, the matrix is merely nonsingular,
  # not positive-definite.  However, empirically, that seemed to lead
  # to bad numerical results.  Until we have better numerical analysis
  # of the situation, let's try just falling back to least-squares
  # pseudoinverse approximation.

  # Otherwise, fall back to whatever heuristics scipy can manage.
  return Covariance_Loser(Sigma) 
開發者ID:probcomp,項目名稱:cgpm,代碼行數:18,代碼來源:mvnormal.py

示例2: solve

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import LinAlgError [as 別名]
def solve(self, f, tol=0):
        dx = -self.alpha*f

        n = len(self.dx)
        if n == 0:
            return dx

        df_f = np.empty(n, dtype=f.dtype)
        for k in xrange(n):
            df_f[k] = vdot(self.df[k], f)

        try:
            gamma = solve(self.a, df_f)
        except LinAlgError:
            # singular; reset the Jacobian approximation
            del self.dx[:]
            del self.df[:]
            return dx

        for m in xrange(n):
            dx += gamma[m]*(self.dx[m] + self.alpha*self.df[m])
        return dx 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:nonlin.py

示例3: log_multivariate_normal_density

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import LinAlgError [as 別名]
def log_multivariate_normal_density(X, means, covars, min_covar=1.e-7):
    """Log probability for full covariance matrices. """
    if hasattr(linalg, 'solve_triangular'):
        # only in scipy since 0.9
        solve_triangular = linalg.solve_triangular
    else:
        # slower, but works
        solve_triangular = linalg.solve
    n_samples, n_dim = X.shape
    nmix = len(means)
    log_prob = np.empty((n_samples, nmix))
    for c, (mu, cv) in enumerate(zip(means, covars)):
        try:
            cv_chol = linalg.cholesky(cv, lower=True)
        except linalg.LinAlgError:
            # The model is most probabily stuck in a component with too
            # few observations, we need to reinitialize this components
            cv_chol = linalg.cholesky(cv + min_covar * np.eye(n_dim),
                                      lower=True)
        cv_log_det = 2 * np.sum(np.log(np.diagonal(cv_chol)))
        cv_sol = solve_triangular(cv_chol, (X - mu).T, lower=True).T
        log_prob[:, c] = - .5 * (np.sum(cv_sol ** 2, axis=1) + \
                                     n_dim * np.log(2 * np.pi) + cv_log_det)

    return log_prob 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:27,代碼來源:utils.py

示例4: _log_multivariate_normal_density_full

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import LinAlgError [as 別名]
def _log_multivariate_normal_density_full(X, means, covars, min_covar=1.e-7):
    """Log probability for full covariance matrices.
    """
    n_samples, n_dim = X.shape
    nmix = len(means)
    log_prob = np.empty((n_samples, nmix))
    for c, (mu, cv) in enumerate(zip(means, covars)):
        try:
            cv_chol = linalg.cholesky(cv, lower=True)
        except linalg.LinAlgError:
            # The model is most probably stuck in a component with too
            # few observations, we need to reinitialize this components
            cv_chol = linalg.cholesky(cv + min_covar * np.eye(n_dim),
                                      lower=True)
        cv_log_det = 2 * np.sum(np.log(np.diagonal(cv_chol)))
        cv_sol = linalg.solve_triangular(cv_chol, (X - mu).T, lower=True).T
        log_prob[:, c] = - .5 * (np.sum(cv_sol ** 2, axis=1) +
                                 n_dim * np.log(2 * np.pi) + cv_log_det)

    return log_prob 
開發者ID:bhmm,項目名稱:bhmm,代碼行數:22,代碼來源:gmm.py

示例5: _log_multivariate_normal_density_full

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import LinAlgError [as 別名]
def _log_multivariate_normal_density_full(X, means, covars, min_covar=1.e-7):
    '''Log probability for full covariance matrices.
    '''
    n_samples, n_dimensions = X.shape
    nmix = len(means)
    log_prob = np.empty((n_samples, nmix))
    for c, (mu, cv) in enumerate(zip(means, covars)):
        try:
            cv_chol = linalg.cholesky(cv, lower=True)
        except linalg.LinAlgError:
            # The model is most probably stuck in a component with too
            # few observations, we need to reinitialize this components
            cv_chol = linalg.cholesky(cv + min_covar * np.eye(n_dimensions),
                                      lower=True)
        cv_log_det = 2 * np.sum(np.log(np.diagonal(cv_chol)))
        cv_sol = linalg.solve_triangular(cv_chol, (X - mu).T, lower=True).T
        log_prob[:, c] = - .5 * (np.sum(cv_sol ** 2, axis=1) +
                                 n_dimensions * np.log(2 * np.pi) + cv_log_det)

    return log_prob 
開發者ID:ebattenberg,項目名稱:ggmm,代碼行數:22,代碼來源:cpu.py

示例6: optimize

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import LinAlgError [as 別名]
def optimize(self, optimizer=None, start=None, **kwargs):
        self._IN_OPTIMIZATION_ = True
        if self.mpi_comm is None:
            super(DeepGP, self).optimize(optimizer,start,**kwargs)
        elif self.mpi_comm.rank==self.mpi_root:
            super(DeepGP, self).optimize(optimizer,start,**kwargs)
            self.mpi_comm.Bcast(np.int32(-1),root=self.mpi_root)
        elif self.mpi_comm.rank!=self.mpi_root:
            x = self.optimizer_array.copy()
            flag = np.empty(1,dtype=np.int32)
            while True:
                self.mpi_comm.Bcast(flag,root=self.mpi_root)
                if flag==1:
                    try:
                        self.optimizer_array = x
                    except (LinAlgError, ZeroDivisionError, ValueError):
                        pass
                elif flag==-1:
                    break
                else:
                    self._IN_OPTIMIZATION_ = False
                    raise Exception("Unrecognizable flag for synchronization!")
        self._IN_OPTIMIZATION_ = False 
開發者ID:SheffieldML,項目名稱:PyDeepGP,代碼行數:25,代碼來源:model.py

示例7: _log_multivariate_normal_density_full

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import LinAlgError [as 別名]
def _log_multivariate_normal_density_full(X, means, covars, min_covar=1.e-7):
    """Log probability for full covariance matrices."""
    n_samples, n_dim = X.shape
    nmix = len(means)
    log_prob = np.empty((n_samples, nmix))
    for c, (mu, cv) in enumerate(zip(means, covars)):
        try:
            cv_chol = linalg.cholesky(cv, lower=True)
        except linalg.LinAlgError:
            # The model is most probably stuck in a component with too
            # few observations, we need to reinitialize this components
            try:
                cv_chol = linalg.cholesky(cv + min_covar * np.eye(n_dim),
                                          lower=True)
            except linalg.LinAlgError:
                raise ValueError("'covars' must be symmetric, "
                                 "positive-definite")

        cv_log_det = 2 * np.sum(np.log(np.diagonal(cv_chol)))
        cv_sol = linalg.solve_triangular(cv_chol, (X - mu).T, lower=True).T
        log_prob[:, c] = - .5 * (np.sum(cv_sol ** 2, axis=1) +
                                 n_dim * np.log(2 * np.pi) + cv_log_det)

    return log_prob 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:26,代碼來源:gmm.py

示例8: __init__

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import LinAlgError [as 別名]
def __init__(self, data):
        self._data = np.atleast_2d(data)

        self._mean = np.mean(data, axis=0)
        self._cov = None

        if self.data.shape[0] > 1:
            try:
                self._cov = np.cov(data.T)

                # Try factoring now to see if regularization is needed
                la.cho_factor(self._cov)

            except la.LinAlgError:
                self._cov = oas_cov(data)

        self._set_bandwidth()

        # store transformation variables for drawing random values
        alphas = np.std(data, axis=0)
        ms = 1./alphas
        m_i, m_j = np.meshgrid(ms, ms)
        ms = m_i * m_j
        self._draw_cov = ms * self._kernel_cov
        self._scale_fac = alphas 
開發者ID:bfarr,項目名稱:kombine,代碼行數:27,代碼來源:clustered_kde.py

示例9: _nystrom_svd

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import LinAlgError [as 別名]
def _nystrom_svd(self, X, n_components):
        """Compute the top eigensystem of a kernel
        operator using Nystrom method

        Parameters
        ----------
        X : {float, array}, shape = [n_subsamples, n_features]
            Subsample feature matrix.

        n_components : int
            Number of top eigencomponents to be restored.

        Returns
        -------
        E : {float, array}, shape = [k]
            Top eigenvalues.

        Lambda : {float, array}, shape = [n_subsamples, k]
            Top eigenvectors of a subsample kernel matrix (which can be
            directly used to approximate the eigenfunctions of the kernel
            operator).
        """
        m, _ = X.shape
        K = self._kernel(X, X)

        W = K / m
        try:
            E, Lambda = eigh(W, eigvals=(m - n_components, m - 1))
        except LinAlgError:
            # Use float64 when eigh fails due to precision
            W = np.float64(W)
            E, Lambda = eigh(W, eigvals=(m - n_components, m - 1))
            E, Lambda = np.float32(E), np.float32(Lambda)
        # Flip so eigenvalues are in descending order.
        E = np.maximum(np.float32(1e-7), np.flipud(E))
        Lambda = np.fliplr(Lambda)[:, :n_components] / np.sqrt(
            m, dtype="float32"
        )

        return E, Lambda 
開發者ID:scikit-learn-contrib,項目名稱:scikit-learn-extra,代碼行數:42,代碼來源:_eigenpro.py

示例10: optimize_transformations

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import LinAlgError [as 別名]
def optimize_transformations(verts0, W, C):
    X = form_X_matrix(verts0, W)
    try:
        Tr = linalg.solve(np.dot(X, X.T), np.dot(C, X.T).T).T
    except linalg.LinAlgError:
        print("singular matrix in optimize_transformations, using slower pseudo-inverse")
        Tr = np.dot(
            np.linalg.pinv(np.dot(X, X.T)),
            np.dot(C, X.T).T).T
    return Tr
    #T = np.dot(B, Tr)
    #T2 = linalg.solve(np.dot(X, X.T), np.dot(A, X.T).T).T 
開發者ID:tneumann,項目名稱:skinning_decomposition_kavan,代碼行數:14,代碼來源:decompose_kavan.py

示例11: update

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import LinAlgError [as 別名]
def update(self, v):
        """Adds point v"""
        self.t += 1
        g = self.gamma()
        self.mu = (1. - g) * self.mu + g * v
        mv = v - self.mu
        self.Sigma = ((1. - g) * self.Sigma
                      + g * np.dot(mv[:, np.newaxis], mv[np.newaxis, :]))
        try:
            self.L = cholesky(self.Sigma, lower=True)
        except LinAlgError:
            self.L = self.L0 
開發者ID:nchopin,項目名稱:particles,代碼行數:14,代碼來源:mcmc.py

示例12: __init__

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import LinAlgError [as 別名]
def __init__(self, x, scale=None, adaptive=True):
            if adaptive:
                if scale is None:
                    scale = 2.38 / np.sqrt(x.shape[1])
                cov = np.cov(x.T)
                try:
                    self.L = scale * cholesky(cov, lower=True)
                except LinAlgError:
                    self.L = scale * np.diag(np.sqrt(np.diag(cov)))
                    print('Warning: could not compute Cholesky decomposition, using diag matrix instead')
            else:
                if scale is None:
                    scale = 1.
                self.L = scale * np.eye(x.shape[1]) 
開發者ID:nchopin,項目名稱:particles,代碼行數:16,代碼來源:smc_samplers.py

示例13: test_economic_1_col_bad_update

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import LinAlgError [as 別名]
def test_economic_1_col_bad_update(self):
        # When the column to be added lies in the span of Q, the update is
        # not meaningful.  This is detected, and a LinAlgError is issued.
        q = np.eye(5, 3, dtype=self.dtype)
        r = np.eye(3, dtype=self.dtype)
        u = np.array([1, 0, 0, 0, 0], self.dtype)
        assert_raises(linalg.LinAlgError, qr_insert, q, r, u, 0, 'col')

    # for column adds to economic matrices there are three cases to test
    # eco + pcol --> eco
    # eco + pcol --> sqr
    # eco + pcol --> fat 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:14,代碼來源:test_decomp_update.py

示例14: statdist

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import LinAlgError [as 別名]
def statdist(generator):
    """Compute the stationary distribution of a Markov chain.

    Parameters
    ----------
    generator : array_like
        Infinitesimal generator matrix of the Markov chain.

    Returns
    -------
    dist : numpy.ndarray
        The unnormalized stationary distribution of the Markov chain.

    Raises
    ------
    ValueError
        If the Markov chain does not have a unique stationary distribution.
    """
    generator = np.asarray(generator)
    n = generator.shape[0]
    with warnings.catch_warnings():
        # The LU decomposition raises a warning when the generator matrix is
        # singular (which it, by construction, is!).
        warnings.filterwarnings("ignore")
        lu, piv = spl.lu_factor(generator.T, check_finite=False)
    # The last row contains 0's only.
    left = lu[:-1,:-1]
    right = -lu[:-1,-1]
    # Solves system `left * x = right`. Assumes that `left` is
    # upper-triangular (ignores lower triangle).
    try:
        res = spl.solve_triangular(left, right, check_finite=False)
    except:
        # Ideally we would like to catch `spl.LinAlgError` only, but there seems
        # to be a bug in scipy, in the code that raises the LinAlgError (!!).
        raise ValueError(
                "stationary distribution could not be computed. "
                "Perhaps the Markov chain has more than one absorbing class?")
    res = np.append(res, 1.0)
    return (n / res.sum()) * res 
開發者ID:lucasmaystre,項目名稱:choix,代碼行數:42,代碼來源:utils.py

示例15: makeAMatrix

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import LinAlgError [as 別名]
def makeAMatrix(self):
        """
        Calculates the "A" matrix, that uses the existing data to find a new 
        component of the new phase vector.
        """
        # Cholsky solve can fail - if so do brute force inversion
        try:
            cf = linalg.cho_factor(self.cov_mat_zz)
            inv_cov_zz = linalg.cho_solve(cf, numpy.identity(self.cov_mat_zz.shape[0]))
        except linalg.LinAlgError:
            raise linalg.LinAlgError("Could not invert Covariance Matrix to for A and B Matrices. Try with a larger pixel scale")

        self.A_mat = self.cov_mat_xz.dot(inv_cov_zz) 
開發者ID:AOtools,項目名稱:aotools,代碼行數:15,代碼來源:infinitephasescreen.py


注:本文中的scipy.linalg.LinAlgError方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。