本文整理匯總了Python中scipy.io方法的典型用法代碼示例。如果您正苦於以下問題:Python scipy.io方法的具體用法?Python scipy.io怎麽用?Python scipy.io使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy
的用法示例。
在下文中一共展示了scipy.io方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: cal_pca_matrix
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import io [as 別名]
def cal_pca_matrix(path='PCA_matrix.mat', ksize=15, l_max=12.0, dim_pca=15, num_samples=500):
kernels = np.zeros([ksize*ksize, num_samples], dtype=np.float32)
for i in range(num_samples):
theta = np.pi*np.random.rand(1)
l1 = 0.1+l_max*np.random.rand(1)
l2 = 0.1+(l1-0.1)*np.random.rand(1)
k = anisotropic_Gaussian(ksize=ksize, theta=theta[0], l1=l1[0], l2=l2[0])
# util.imshow(k)
kernels[:, i] = np.reshape(k, (-1), order="F") # k.flatten(order='F')
# io.savemat('k.mat', {'k': kernels})
pca_matrix = get_pca_matrix(kernels, dim_pca=dim_pca)
io.savemat(path, {'p': pca_matrix})
return pca_matrix
示例2: load
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import io [as 別名]
def load(io: Union[str, BinaryIO]):
"""
Args:
io: (str or binary file-like object): input file to load data from
Returns:
An instance of `DensePoseTransformData` with transforms loaded from the file
"""
import scipy.io
uv_symmetry_map = scipy.io.loadmat(io)
uv_symmetry_map_torch = {}
for key in ["U_transforms", "V_transforms"]:
uv_symmetry_map_torch[key] = []
map_src = uv_symmetry_map[key]
map_dst = uv_symmetry_map_torch[key]
for i in range(map_src.shape[1]):
map_dst.append(torch.from_numpy(map_src[0, i]).to(dtype=torch.float))
uv_symmetry_map_torch[key] = torch.stack(map_dst, dim=0)
transform_data = DensePoseTransformData(uv_symmetry_map_torch, device=torch.device("cpu"))
return transform_data
示例3: load_mat_file
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import io [as 別名]
def load_mat_file(name, path, matname, load_zeros = False, prop_valid_set = .1, prop_test_set=0):
x = scipy.io.loadmat(path + name)[matname]
if sp.issparse(x):
if not load_zeros:
idxs = x.nonzero()
indexes = np.array(zip(idxs[0], np.zeros_like(idxs[0]), idxs[1]))
np.random.shuffle(indexes)
nb = indexes.shape[0]
i_valid = int(nb - nb*prop_valid_set - nb * prop_test_set)
i_test = i_valid + int( nb*prop_valid_set)
train = Triplets_set(indexes[:i_valid,:], np.ones(i_valid))
valid = Triplets_set(indexes[i_valid:i_test,:], np.ones(i_test - i_valid))
test = Triplets_set(indexes[i_test:,:], np.ones(nb - i_test))
return Experiment(name,train, valid, test, positives_only = True, compute_ranking_scores = True)
示例4: read_edf
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import io [as 別名]
def read_edf(edf_fname, from_t, to_t):
import mne.io
edf_raw = mne.io.read_raw_edf(edf_fname, preload=True)
edf_raw.notch_filter(np.arange(60, 241, 60))
dt = (edf_raw.times[1] - edf_raw.times[0])
hz = int(1/ dt)
T = edf_raw.times[-1] # sec
live_channels = find_live_channels(edf_raw, hz)
ylim = [-0.0015, 0.0015]
from_t = 17
window = to_t - from_t
# plot_window(edf_raw, live_channels, t_start, window, hz, ylim)
# plot_all_windows(edf_raw, live_channels, T, hz, window, edf_fname, ylim)
data, times = edf_raw[:, int(from_t*hz):int(from_t*hz) + hz * window]
# plot_power(data[0], dt)
# edf_raw.plot(None, 1, 20, 20)
示例5: find_file_encoding
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import io [as 別名]
def find_file_encoding(fname):
import io
encodings = ['utf-8', 'windows-1250', 'windows-1252']
for e in encodings:
try:
fh = io.open(fname, 'r', encoding=e)
fh.readlines()
fh.seek(0)
except UnicodeDecodeError:
# print('got unicode error with %s , trying different encoding' % e)
continue
else:
# print('opening the file with encoding: %s ' % e)
return e
else:
return None
示例6: calculate_psnr_fast_srgb
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import io [as 別名]
def calculate_psnr_fast_srgb(prediction, target):
avg_psnr = 0
srgb_params = init_colortransformation_gamma()
psnr_list = []
for i in range(prediction.shape[0]):
ref = target[i]
out = prediction[i]
out = out.transpose((2, 0, 1))
out = np.clip(out, 0, 255)
result_rgb = apply_colortransformation_gamma(np.expand_dims(out,0), srgb_params)
result_rgb = np.clip(result_rgb[0], 0, 255)
result_rgb = result_rgb.transpose((1, 2, 0))
#io.imsave(file.replace('_output','_output_srgb'),result_rgb.astype('uint8'))
result_rgb = result_rgb.astype(np.float32)
ref = ref/255
result_rgb = result_rgb/255
psnr = 10 * np.log10(1**2/np.mean((ref - result_rgb)**2))
result_rgb = result_rgb * 255
result_rgb = result_rgb.transpose((2, 0, 1))
psnr_list.append(psnr)
return psnr_list, torch.FloatTensor(result_rgb[None,:])
示例7: _openResources
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import io [as 別名]
def _openResources(self):
""" Uses numpy.loadtxt to open the underlying file
"""
self._dictionary = scipy.io.loadmat(self._fileName)
示例8: main
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import io [as 別名]
def main():
# for AwA dataset: Perfectly works.
opts = parse_args()
awa = scipy.io.loadmat('awa_demo_data.mat')
train_data = awa['X_tr']
test_data = awa['X_te']
train_class_attributes_labels_continuous_allset = awa['S_tr']
opts.test_labels = awa['test_labels']
opts.test_classes_id = awa['testclasses_id']
test_class_attributes_labels_continuous = awa['S_te_gt']
##### Normalize the data
train_data = normalizeFeature(train_data.transpose()).transpose()
##### Training
# SAE
W = SAE(train_data.transpose(), train_class_attributes_labels_continuous_allset.transpose(), opts.ld)
##### Test
opts.HITK = 1
# [F --> S], projecting data from feature space to semantic space: 84.68% for AwA dataset
semantic_predicted = np.dot(test_data, normalizeFeature(W).transpose())
[zsl_accuracy, y_hit_k] = zsl_acc(semantic_predicted, test_class_attributes_labels_continuous, opts)
print('[1] zsl accuracy for AwA dataset [F >>> S]: {:.2f}%'.format(zsl_accuracy))
# [S --> F], projecting from semantic to visual space: 84.00% for AwA dataset
test_predicted = np.dot(normalizeFeature(test_class_attributes_labels_continuous.transpose()).transpose(), normalizeFeature(W))
[zsl_accuracy, y_hit_k] = zsl_acc(test_data, test_predicted, opts)
print('[2] zsl accuracy for AwA dataset [S >>> F]: {:.2f}%'.format(zsl_accuracy))
示例9: initialize_transformer
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import io [as 別名]
def initialize_transformer(image_mean):
shape = (10*16, 3, 227, 227)
transformer = caffe.io.Transformer({'data': shape})
channel_mean = np.zeros((3,227,227))
for channel_index, mean_val in enumerate(image_mean):
channel_mean[channel_index, ...] = mean_val
transformer.set_mean('data', channel_mean)
transformer.set_raw_scale('data', 255)
transformer.set_channel_swap('data', (2, 1, 0))
transformer.set_transpose('data', (2, 0, 1))
#transformer.set_is_flow('data', is_flow)
return transformer
示例10: singleFrame_classify_video
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import io [as 別名]
def singleFrame_classify_video(signal, net, transformer, with_smoothing, classNamesCNN):
batch_size = 1
input_images = []
input_im = caffe.io.load_image(signal.replace(".wav",".png"))
input_images.append(input_im)
os.remove(signal.replace(".wav",".png"))
#Initialize predictions matrix
output_predictions = np.zeros((len(input_images),2))
output_classes = []
#print [method for method in dir(net) if callable(getattr(net, method))]
for i in range(0,len(input_images)):
# print "Classifying Spectrogram: ",i+1
clip_input = input_images[i:min(i+batch_size, len(input_images))] #get every image -- batch_size==1
clip_input = caffe.io.oversample(clip_input,[227,227]) #make it 227x227
caffe_in = np.zeros(np.array(clip_input.shape)[[0,3,1,2]], dtype=np.float32) #initialize input matrix
for ix, inputs in enumerate(clip_input):
caffe_in[ix] = transformer.preprocess('data',inputs) # transform input data appropriatelly and add to input matrix
net.blobs['data'].reshape(caffe_in.shape[0], caffe_in.shape[1], caffe_in.shape[2], caffe_in.shape[3]) #make input caffe readable
out = net.forward_all(data=caffe_in) #feed input to the network
output_predictions[i:i+batch_size] = np.mean(out['probs'].reshape(10,caffe_in.shape[0]/10,2),0) #predict labels
#Store predicted Labels without smoothing
iMAX = output_predictions[i:i+batch_size].argmax(axis=1)[0]
prediction = classNamesCNN[iMAX]
output_classes.append(prediction)
#print "Predicted Label for file --> ", signal.upper() ,":", prediction
return output_classes, output_predictions
示例11: save_model
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import io [as 別名]
def save_model(self, weight_path, pmf_path=None):
self.saver.save(self.sess, weight_path)
logging.info("Weights saved at " + weight_path)
if pmf_path is not None:
scipy.io.savemat(pmf_path,{"m_U": self.m_U, "m_V": self.m_V, "m_theta": self.m_theta})
logging.info("Weights saved at " + pmf_path)
示例12: load_model
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import io [as 別名]
def load_model(self, weight_path, pmf_path=None):
logging.info("Loading weights from " + weight_path)
self.saver.restore(self.sess, weight_path)
if pmf_path is not None:
logging.info("Loading pmf data from " + pmf_path)
data = scipy.io.loadmat(pmf_path)
self.m_U[:] = data["m_U"]
self.m_V[:] = data["m_V"]
self.m_theta[:] = data["m_theta"]
示例13: load_mat_to_bag
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import io [as 別名]
def load_mat_to_bag(mat_fname):
import scipy.io as sio
return Bag(dict(**sio.loadmat(mat_fname)))
示例14: sta_calculation_parallel
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import io [as 別名]
def sta_calculation_parallel(arg_in):
WN_stim = arg_in[0]
binned_spikes = arg_in[1]
which_spikes = arg_in[2]
STA_temporal_length = arg_in[3]
stim_size = arg_in[4]
fname = arg_in[5]
####################
### Calculate STA ##
####################
## Swap out fastest version here
_, n_color_channels, n_pixels = WN_stim.shape
STA = np.zeros((STA_temporal_length, n_color_channels, n_pixels))
for i in range(which_spikes.shape[0]):
bin_number = which_spikes[i]
STA += binned_spikes[bin_number]*WN_stim[bin_number-(STA_temporal_length-1):bin_number+1]
if which_spikes.shape[0] == 0:
STA += 0.5
# full sta
if np.sum(binned_spikes[STA_temporal_length:])>0:
STA = STA/np.sum(binned_spikes[STA_temporal_length:])
STA = STA.reshape(STA_temporal_length, n_color_channels,
stim_size[0], stim_size[1])
STA = STA.transpose(2,3,1,0)
scipy.io.savemat(fname, mdict={'temp_stas': STA})
示例15: test_mat_read
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import io [as 別名]
def test_mat_read(self):
# Test mat file reading and writing for the SPM analyze types
img_klass = self.image_class
arr = np.arange(24, dtype=np.int32).reshape((2,3,4))
aff = np.diag([2,3,4,1]) # no LR flip in affine
img = img_klass(arr, aff)
fm = img.file_map
for key, value in fm.items():
value.fileobj = BytesIO()
# Test round trip
img.to_file_map()
r_img = img_klass.from_file_map(fm)
assert_array_equal(r_img.get_data(), arr)
assert_array_equal(r_img.get_affine(), aff)
# mat files are for matlab and have 111 voxel origins. We need to
# adjust for that, when loading and saving. Check for signs of that in
# the saved mat file
mat_fileobj = img.file_map['mat'].fileobj
from scipy.io import loadmat, savemat
mat_fileobj.seek(0)
mats = loadmat(mat_fileobj)
assert_true('M' in mats and 'mat' in mats)
from_111 = np.eye(4)
from_111[:3,3] = -1
to_111 = np.eye(4)
to_111[:3,3] = 1
assert_array_equal(mats['mat'], np.dot(aff, from_111))
# The M matrix does not include flips, so if we only
# have the M matrix in the mat file, and we have default flipping, the
# mat resulting should have a flip. The 'mat' matrix does include flips
# and so should be unaffected by the flipping. If both are present we
# prefer the the 'mat' matrix.
assert_true(img.get_header().default_x_flip) # check the default
flipper = np.diag([-1,1,1,1])
assert_array_equal(mats['M'], np.dot(aff, np.dot(flipper, from_111)))
mat_fileobj.seek(0)
savemat(mat_fileobj, dict(M=np.diag([3,4,5,1]), mat=np.diag([6,7,8,1])))
# Check we are preferring the 'mat' matrix
r_img = img_klass.from_file_map(fm)
assert_array_equal(r_img.get_data(), arr)
assert_array_equal(r_img.get_affine(),
np.dot(np.diag([6,7,8,1]), to_111))
# But will use M if present
mat_fileobj.seek(0)
mat_fileobj.truncate(0)
savemat(mat_fileobj, dict(M=np.diag([3,4,5,1])))
r_img = img_klass.from_file_map(fm)
assert_array_equal(r_img.get_data(), arr)
assert_array_equal(r_img.get_affine(),
np.dot(np.diag([3,4,5,1]), np.dot(flipper, to_111)))