本文整理匯總了Python中scipy.interpolate.splprep方法的典型用法代碼示例。如果您正苦於以下問題:Python interpolate.splprep方法的具體用法?Python interpolate.splprep怎麽用?Python interpolate.splprep使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.interpolate
的用法示例。
在下文中一共展示了interpolate.splprep方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: set_params
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import splprep [as 別名]
def set_params(self, params, start=None, goal=None):
points = params.reshape((-1, self.d)).T
if start is not None:
points = np.hstack((start[:, None], points))
if goal is not None:
points = np.hstack((points, goal[:, None]))
self.tck, u = si.splprep(points, k=3)
if start is not None:
for a, sv in izip(self.tck[1], start):
a[0] = sv
if goal is not None:
for a, gv in izip(self.tck[1], goal):
a[-1] = gv
示例2: get_velocities
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import splprep [as 別名]
def get_velocities(positions, times, tol):
positions = np.atleast_2d(positions)
n = len(positions)
deg = min(3, n - 1)
good_inds = np.r_[True, (abs(times[1:] - times[:-1]) >= 1e-6)]
good_positions = positions[good_inds]
good_times = times[good_inds]
if len(good_inds) == 1:
return np.zeros(positions[0:1].shape)
(tck, _) = si.splprep(good_positions.T, s=tol ** 2 * (n + 1), u=good_times, k=deg)
# smooth_positions = np.r_[si.splev(times,tck,der=0)].T
velocities = np.r_[si.splev(times, tck, der=1)].T
return velocities
示例3: _interpolate
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import splprep [as 別名]
def _interpolate(xy, num_points):
tck,u = splprep([
xy[:,0],
xy[:,1]],
s=0
)
unew = linspace(0, 1, num_points)
out = splev(unew, tck)
return column_stack(out)
示例4: _rnd_interpolate
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import splprep [as 別名]
def _rnd_interpolate(xy, num_points, ordered=False):
tck,u = splprep([
xy[:,0],
xy[:,1]],
s=0
)
unew = random(num_points)
if ordered:
unew = sort(unew)
out = splev(unew, tck)
return column_stack(out)
示例5: distribute
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import splprep [as 別名]
def distribute(self, direction='u', number=0, type='constant'):
if direction == 'u':
line = np.array(self.getULines()[number])
elif direction == 'v':
line = np.array(self.getVLines()[number])
# interpolate B-spline through data points
# here, a linear interpolant is derived "k=1"
# splprep returns:
# tck ... tuple (t,c,k) containing the vector of knots,
# the B-spline coefficients, and the degree of the spline.
# u ... array of the parameters for each given point (knot)
tck, u = interpolate.splprep(line.T, s=0, k=1)
if type == 'constant':
t = np.linspace(0.0, 1.0, num=len(line))
if type == 'transition':
first = np.array(self.getULines()[0])
last = np.array(self.getULines()[-1])
tck_first, u_first = interpolate.splprep(first.T, s=0, k=1)
tck_last, u_last = interpolate.splprep(last.T, s=0, k=1)
if number < 0.0:
number = len(self.getVLines())
v = float(number) / float(len(self.getVLines()))
t = (1.0 - v) * u_first + v * u_last
# evaluate function at any parameter "0<=t<=1"
line = interpolate.splev(t, tck, der=0)
line = list(zip(line[0].tolist(), line[1].tolist()))
if direction == 'u':
self.getULines()[number] = line
elif direction == 'v':
for i, uline in enumerate(self.getULines()):
self.getULines()[i][number] = line[i]
示例6: spline
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import splprep [as 別名]
def spline(self, x, y, points=200, degree=2, evaluate=False):
"""Interpolate spline through given points
Args:
spline (int, optional): Number of points on the spline
degree (int, optional): Degree of the spline
evaluate (bool, optional): If True, evaluate spline just at
the coordinates of the knots
"""
# interpolate B-spline through data points
# returns knots of control polygon
# tck ... tuple (t,c,k) containing the vector of knots,
# the B-spline coefficients, and the degree of the spline.
# u ... array of the parameters for each knot
# NOTE: s=0.0 is important as no smoothing should be done on the spline
# after interpolating it
tck, u = interpolate.splprep([x, y], s=0.0, k=degree)
# number of points on interpolated B-spline (parameter t)
t = np.linspace(0.0, 1.0, points)
# if True, evaluate spline just at the coordinates of the knots
if evaluate:
t = u
# evaluate B-spline at given parameters
# der=0: returns point coordinates
coo = interpolate.splev(t, tck, der=0)
# evaluate 1st derivative at given parameters
der1 = interpolate.splev(t, tck, der=1)
# evaluate 2nd derivative at given parameters
der2 = interpolate.splev(t, tck, der=2)
spline_data = [coo, u, t, der1, der2, tck]
return spline_data
示例7: get_boundary_points
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import splprep [as 別名]
def get_boundary_points(x, y):
tck, u = interpolate.splprep([x, y], s=0, per=1)
unew = np.linspace(u.min(), u.max(), 1000)
xnew, ynew = interpolate.splev(unew, tck, der=0)
tup = c_[xnew.astype(int), ynew.astype(int)].tolist()
coord = list(set(tuple(map(tuple, tup))))
coord = np.array([list(elem) for elem in coord])
return np.array(coord[:, 0], dtype=np.int32), np.array(coord[:, 1], dtype=np.int32)
示例8: getBoundaryPoints
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import splprep [as 別名]
def getBoundaryPoints(x = [], y = []):
tck,u = interpolate.splprep([x, y], s=0, per=1)
unew = np.linspace(u.min(), u.max(), 1000)
xnew,ynew = interpolate.splev(unew, tck, der=0)
tup = c_[xnew.astype(int),ynew.astype(int)].tolist()
coord = list(set(tuple(map(tuple, tup))))
coord = np.array([list(elem) for elem in coord])
return coord[:,0],coord[:,1]
示例9: getBoundaryPoints
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import splprep [as 別名]
def getBoundaryPoints(x , y):
tck,u = interpolate.splprep([x, y], s=0, per=1)
unew = np.linspace(u.min(), u.max(), 10000)
xnew,ynew = interpolate.splev(unew, tck, der=0)
tup = c_[xnew.astype(int),ynew.astype(int)].tolist()
coord = list(set(tuple(map(tuple, tup))))
coord = np.array([list(elem) for elem in coord])
return coord[:,0],coord[:,1]
示例10: getCircularBounds
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import splprep [as 別名]
def getCircularBounds(fitCloud=None,width=64,height=64,smoothing=0.01):
circumference = 2*(width+height)
if not fitCloud is None:
cx = np.mean(fitCloud[:,0])
cy = np.mean(fitCloud[:,1])
r = 0.5* max( np.max(fitCloud[:,0])- np.min(fitCloud[:,0]),np.max(fitCloud[:,1])- np.min(fitCloud[:,1]))
else:
r = circumference /(2.0*math.pi)
cx = cy = r
perimeterPoints = np.zeros((circumference,2),dtype=float)
for i in range(circumference):
angle = (2.0*math.pi)*float(i) / circumference - math.pi * 0.5
perimeterPoints[i][0] = cx + r * math.cos(angle)
perimeterPoints[i][1] = cy + r * math.sin(angle)
bounds = {'top':perimeterPoints[0:width],
'right':perimeterPoints[width-1:width+height-1],
'bottom':perimeterPoints[width+height-2:2*width+height-2],
'left':perimeterPoints[2*width+height-3:]}
bounds['s_top'],u = interpolate.splprep([bounds['top'][:,0], bounds['top'][:,1]],s=smoothing)
bounds['s_right'],u = interpolate.splprep([bounds['right'][:,0],bounds['right'][:,1]],s=smoothing)
bounds['s_bottom'],u = interpolate.splprep([bounds['bottom'][:,0],bounds['bottom'][:,1]],s=smoothing)
bounds['s_left'],u = interpolate.splprep([bounds['left'][:,0],bounds['left'][:,1]],s=smoothing)
return bounds
示例11: _rnd_interpolate
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import splprep [as 別名]
def _rnd_interpolate(xy, num_points, ordered=False):
tck,u = splprep([
xy[:,0],
xy[:,1]],
s=0
)
unew = random(num_points)
if sort:
unew = sort(unew)
out = splev(unew, tck)
return column_stack(out)
示例12: fitSpline
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import splprep [as 別名]
def fitSpline(points):
pts = np.array(points)
#print("points",pts.T)
#pts = np.delete(pts,-1)
#print("x = ",pts.T[:][0])
x1 = pts.T[:][0]
y1 = pts.T[:][1]
#print("x1 = ",x1.T)
#print("shape x:- ",np.shape(x1))
#print("shape y:- ",np.shape(y1))
x1 = x1[::-1]
y1 = y1[::-1]
#tck, u = splprep(pts.T, u=None, s=0.0, per=1, k=3)
tck = splrep(x1,y1, s=1, k=2)
#tck,u = splprep(pts.T[:][0],pts.T[:][1], s=1, k=3)
#tck,u = splprep(pts.T, s=0.0, k=3,per = 0)
#u_new = np.linspace(u.min(), u.max(), 1000)
u_new = np.arange(x1[0], x1[len(x1)-1]+1,0.1)
#print(x1[0])
#print(x1[len(x1)-1] +1 )
#print(u_new)
#u_new = np.arange(pts.T[0][0], pts.T[len[pts]-1][0],0.001)
#x_new, y_new = splev(u_new, tck, der=0)
y_new = splev(u_new, tck, der=0)
#return list(zip(x_new,y_new))
return list(zip(u_new,y_new))
開發者ID:realkushagrakhare,項目名稱:3D_Path_Planning,代碼行數:28,代碼來源:rrt-star_SplineFitting_NodePruning_2PhaseSampling.py
示例13: fitSpline
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import splprep [as 別名]
def fitSpline(points):
pts = np.array(points)
#print("points",pts.T)
#pts = np.delete(pts,-1)
#print("x = ",pts.T[:][0])
x1 = pts.T[:][0]
y1 = pts.T[:][1]
#print("x1 = ",x1.T)
#print("shape x:- ",np.shape(x1))
#print("shape y:- ",np.shape(y1))
x1 = x1[::-1]
y1 = y1[::-1]
#tck, u = splprep(pts.T, u=None, s=0.0, per=1, k=3)
tck = splrep(x1,y1, s=1, k=3)
#tck,u = splprep(pts.T[:][0],pts.T[:][1], s=1, k=3)
#tck,u = splprep(pts.T, s=0.0, k=3,per = 0)
#u_new = np.linspace(u.min(), u.max(), 1000)
u_new = np.arange(x1[0], x1[len(x1)-1]+1,0.1)
#print(x1[0])
#print(x1[len(x1)-1] +1 )
#print(u_new)
#u_new = np.arange(pts.T[0][0], pts.T[len[pts]-1][0],0.001)
#x_new, y_new = splev(u_new, tck, der=0)
y_new = splev(u_new, tck, der=0)
#return list(zip(x_new,y_new))
return list(zip(u_new,y_new))
示例14: fitSpline
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import splprep [as 別名]
def fitSpline(points):
pts = np.array(points)
tck, u = splprep(pts.T, u=None, s=0.0, per=1)
u_new = np.linspace(u.min(), u.max(), 1000)
x_new, y_new = splev(u_new, tck, der=0)
return list(zip(x_new,y_new))
示例15: transfinite
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import splprep [as 別名]
def transfinite(north, south, west, east):
"""Make a transfinite interpolation.
http://en.wikipedia.org/wiki/Transfinite_interpolation
"""
south = np.array(south)
north = np.array(north)
west = np.array(west)
east = np.array(east)
# convert the block boundary curves into parametric form
# as curves need to be between 0 and 1
# interpolate B-spline through data points
# here, a linear interpolant is derived "k=1"
# splprep returns:
# tck ... tuple (t,c,k) containing the vector of knots,
# the B-spline coefficients, and the degree of the spline.
# u ... array of the parameters for each given point (knot)
tck_lower, u_lower = interpolate.splprep(south.T, s=0, k=1)
tck_upper, u_upper = interpolate.splprep(north.T, s=0, k=1)
tck_left, u_left = interpolate.splprep(west.T, s=0, k=1)
tck_right, u_right = interpolate.splprep(east.T, s=0, k=1)
# evaluate function at any parameter "0<=t<=1"
def eta_left(t):
return np.array(interpolate.splev(t, tck_left, der=0))
def eta_right(t):
return np.array(interpolate.splev(t, tck_right, der=0))
def xi_bottom(t):
return np.array(interpolate.splev(t, tck_lower, der=0))
def xi_top(t):
return np.array(interpolate.splev(t, tck_upper, der=0))
nodes = np.zeros((len(west) * len(south), 2))
# corner points
c1 = xi_bottom(0.0)
c2 = xi_top(0.0)
c3 = xi_bottom(1.0)
c4 = xi_top(1.0)
for i, xi in enumerate(u_lower):
xi_t = u_upper[i]
for j, eta in enumerate(u_left):
eta_r = u_right[j]
node = i * len(u_left) + j
# formula for the transinite interpolation
point = (1.0 - xi) * eta_left(eta) + xi * eta_right(eta_r) + \
(1.0 - eta) * xi_bottom(xi) + eta * xi_top(xi_t) - \
((1.0 - xi) * (1.0 - eta) * c1 + (1.0 - xi) * eta * c2 +
xi * (1.0 - eta) * c3 + xi * eta * c4)
nodes[node, 0] = point[0]
nodes[node, 1] = point[1]
return nodes