當前位置: 首頁>>代碼示例>>Python>>正文


Python interpolate.pchip_interpolate方法代碼示例

本文整理匯總了Python中scipy.interpolate.pchip_interpolate方法的典型用法代碼示例。如果您正苦於以下問題:Python interpolate.pchip_interpolate方法的具體用法?Python interpolate.pchip_interpolate怎麽用?Python interpolate.pchip_interpolate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.interpolate的用法示例。


在下文中一共展示了interpolate.pchip_interpolate方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: stopPicking

# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import pchip_interpolate [as 別名]
def stopPicking(self,proj,canvas):
        filename = fd.asksaveasfilename()
        if filename is not '':
            self.picking = False
            canvas.mpl_disconnect(self.pick_cid)
            print("Picking mode off")
            np.savetxt(filename+'_profile.txt',self.picked,delimiter='\t')
            print('saved picked file as "%s"' %(filename+'_profile.txt'))
            # If we have 3D info, also plot it as 3D points
            if proj.threeD is not None:
                # First calculate along-track points
                topoVal = proj.threeD[:,2]
                npos = proj.threeD.shape[0]
                steplen = np.sqrt(
                    np.power( proj.threeD[1:npos,0]-proj.threeD[0:npos-1,0] ,2.0) + 
                    np.power( proj.threeD[1:npos,1]-proj.threeD[0:npos-1,1] ,2.0) +
                    np.power( proj.threeD[1:npos,2]-proj.threeD[0:npos-1,2] ,2.0)
                )
                alongdist = np.cumsum(steplen)
                topoPos = np.append(0,alongdist)
                pick3D = np.zeros((self.picked.shape[0],3))
                # If profile is adjusted, need to start the picked at zero.
                pickProfileShifted = self.picked[:,0] - np.min(proj.profilePos)
                #for i in range(0,3):
                for i in range(0,2):
                    pick3D[:,i] = interp.pchip_interpolate(topoPos,
                                                           proj.threeD[:,i],
                                                           pickProfileShifted).squeeze()
                                                           #self.picked[:,0]).squeeze()
            
                pick3D[:,2] = self.picked[:,1].squeeze()
                    
                np.savetxt(filename+'_3D.txt',pick3D,delimiter='\t')
                print('saved picked file as "%s"' %(filename+'_3D.txt')) 
開發者ID:NSGeophysics,項目名稱:GPRPy,代碼行數:36,代碼來源:gprpyGUI.py

示例2: _interpolate_scipy_wrapper

# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import pchip_interpolate [as 別名]
def _interpolate_scipy_wrapper(x, y, new_x, method, fill_value=None,
                               bounds_error=False, order=None, **kwargs):
    """
    passed off to scipy.interpolate.interp1d. method is scipy's kind.
    Returns an array interpolated at new_x.  Add any new methods to
    the list in _clean_interp_method
    """
    try:
        from scipy import interpolate
        from pandas import DatetimeIndex
    except ImportError:
        raise ImportError('{0} interpolation requires Scipy'.format(method))

    new_x = np.asarray(new_x)

    # ignores some kwargs that could be passed along.
    alt_methods = {
        'barycentric': interpolate.barycentric_interpolate,
        'krogh': interpolate.krogh_interpolate,
        'piecewise_polynomial': interpolate.piecewise_polynomial_interpolate,
    }

    if getattr(x, 'is_all_dates', False):
        # GH 5975, scipy.interp1d can't hande datetime64s
        x, new_x = x.values.astype('i8'), new_x.astype('i8')

    try:
        alt_methods['pchip'] = interpolate.pchip_interpolate
    except AttributeError:
        if method == 'pchip':
            raise ImportError("Your version of scipy does not support "
                              "PCHIP interpolation.")

    interp1d_methods = ['nearest', 'zero', 'slinear', 'quadratic', 'cubic',
                        'polynomial']
    if method in interp1d_methods:
        if method == 'polynomial':
            method = order
        terp = interpolate.interp1d(x, y, kind=method, fill_value=fill_value,
                                    bounds_error=bounds_error)
        new_y = terp(new_x)
    elif method == 'spline':
        terp = interpolate.UnivariateSpline(x, y, k=order)
        new_y = terp(new_x)
    else:
        method = alt_methods[method]
        new_y = method(x, y, new_x)
    return new_y 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:50,代碼來源:common.py

示例3: correctTopo

# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import pchip_interpolate [as 別名]
def correctTopo(data, velocity, profilePos, topoPos, topoVal, twtt):
    '''
    Corrects for topography along the profile by shifting each 
    Trace up or down depending on provided coordinates.

    INPUT:
    data          data matrix whose columns contain the traces
    velocity      subsurface RMS velocity in m/ns
    profilePos    along-profile coordinates of the traces
    topoPos       along-profile coordinates for provided elevation
                  in meters
    topoVal       elevation values for provided along-profile 
                  coordinates, in meters
    twtt          two-way travel time values for the samples, in ns

    OUTPUT:
    newdata       data matrix with shifted traces, padded with NaN 
    newtwtt       twtt for the shifted / padded data matrix
    maxElev       maximum elevation value
    minElev       minimum elevation value
    '''
    # We assume that the profilePos are the correct along-profile
    # points of the measurements (they can be correted with adj profile)
    # For some along-profile points, we have the elevation from prepTopo
    # So we can just interpolate    
    if not ((all(np.diff(topoPos)>0)) or  (all(np.diff(topoPos)<0))):
        raise ValueError('\x1b[1;31;47m' + 'The profile vs topo file does not have purely increasing or decreasing along-profile positions' + '\x1b[0m')        
    else:
        elev = interp.pchip_interpolate(topoPos,topoVal,profilePos)
        elevdiff = elev-np.min(elev)
        # Turn each elevation point into a two way travel-time shift.
        # It's two-way travel time
        etime = 2*elevdiff/velocity
        timeStep=twtt[3]-twtt[2]
        # Calculate the time shift for each trace
        tshift = (np.round(etime/timeStep)).astype(int)
        maxup = np.max(tshift)
        # We want the highest elevation to be zero time.
        # Need to shift by the greatest amount, where  we are the lowest
        tshift = np.max(tshift) - tshift
        # Make new datamatrix
        newdata = np.empty((data.shape[0]+maxup,data.shape[1]))
        newdata[:] = np.nan
        # Set new twtt
        newtwtt = np.arange(0, twtt[-1] + maxup*timeStep, timeStep)
        nsamples = len(twtt)
        # Enter every trace at the right place into newdata
        for pos in range(0,len(profilePos)):
            #print(type(tshift[pos][0]))
            newdata[tshift[pos][0]:tshift[pos][0]+nsamples ,pos] = np.squeeze(data[:,pos])
        return newdata, newtwtt, np.max(elev), np.min(elev) 
開發者ID:NSGeophysics,項目名稱:GPRPy,代碼行數:53,代碼來源:gprpyTools.py


注:本文中的scipy.interpolate.pchip_interpolate方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。