本文整理匯總了Python中scipy.interpolate.interpn方法的典型用法代碼示例。如果您正苦於以下問題:Python interpolate.interpn方法的具體用法?Python interpolate.interpn怎麽用?Python interpolate.interpn使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.interpolate
的用法示例。
在下文中一共展示了interpolate.interpn方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _build_basement
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import interpn [as 別名]
def _build_basement(self, tXY, bPts, regX, regY):
"""
Using Pandas library to read the basement map file and define consolidated and
soft sediment region.
"""
self.tXY = tXY
# Read basement file
self.tinBase = numpy.ones(len(tXY))
Bmap = pandas.read_csv(str(self.baseMap), sep=r'\s+', engine='c',
header=None, na_filter=False, dtype=numpy.float, low_memory=False)
rectBase = numpy.reshape(Bmap.values,(len(regX), len(regY)),order='F')
self.tinBase[bPts:] = interpolate.interpn( (regX, regY), rectBase,
tXY[bPts:,:], method='linear')
return
示例2: getElevation
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import interpn [as 別名]
def getElevation(rX, rY, rZ, coords, interp="linear"):
"""
This function interpolates elevation from the regular grid to the triamgular mesh
using **SciPy** *interpn* funciton.
Args:
rX: numpy arrays containing the X coordinates from the regular grid.
rY: numpy arrays containing the Y coordinates from the regular grid.
rZ: numpy arrays containing the Z coordinates from the regular grid.
coords: numpy float-type array containing X, Y coordinates for the TIN nodes.
interp: interpolation method as in *SciPy interpn function* (default: 'linear')
Returns:
- elev - numpy array containing the updated elevations for the local domain.
"""
# Set new elevation to 0
elev = numpy.zeros(len(coords[:, 0]))
# Get the TIN points elevation values using the regular grid dataset
elev = interpn((rX, rY), rZ, (coords[:, :2]), method=interp)
return elev
示例3: fScaleOnePatch
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import interpn [as 別名]
def fScaleOnePatch(dPatch, randPatchSize, PatchSize):
xaxis = np.linspace(0, PatchSize[0], randPatchSize[0])
yaxis = np.linspace(0, PatchSize[1], randPatchSize[1])
zaxis = np.linspace(0, PatchSize[2], randPatchSize[2])
inter_train0 = np.mgrid[0:PatchSize[0], 0:PatchSize[1], 0:PatchSize[2]]
inter_train1 = np.rollaxis(inter_train0, 0, 4)
inter_train = np.reshape(inter_train1, [inter_train0.size // 3, 3])
scaleddPatch = interpolate.interpn((xaxis, yaxis, zaxis), dPatch, inter_train, method='linear', bounds_error=False, fill_value=0)
reshdPatch = np.reshape(scaleddPatch, [PatchSize[0], PatchSize[1], PatchSize[2]])
return reshdPatch
示例4: __call__
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import interpn [as 別名]
def __call__(self, values, **kwargs):
"""Evaluate interpolator for values given at the source points.
Parameters
----------
values : :class:`numpy:numpy.ndarray` of floats
Values at the source points which to interpolate, shape (num src pts, ...)
Returns
-------
result : :class:`numpy:numpy.ndarray` of floats
Target values with shape (num trg pts, ...)
"""
# override bounds_error
kwargs["bounds_error"] = kwargs.pop("bounds_error", False)
kwargs["method"] = kwargs.pop("method", self.method)
# need to flip ydim if grid origin is 'upper'
if self.upper:
values = np.flip(values, self.ydim)
result = sinterp.interpn(self.ipol_grid, values, self.ipol_points, **kwargs)
return result.reshape(self.points.shape[:-1])
示例5: evaluate
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import interpn [as 別名]
def evaluate(self, *inputs):
"""
Return the interpolated values at the input coordinates.
Parameters
----------
inputs : list of scalars or ndarrays
Input coordinates. The number of inputs must be equal
to the dimensions of the lookup table.
"""
if isinstance(inputs, u.Quantity):
inputs = inputs.value
shape = inputs[0].shape
inputs = [inp.flatten() for inp in inputs[: self.n_inputs]]
inputs = np.array(inputs).T
if not has_scipy: # pragma: no cover
raise ImportError("This model requires scipy >= v0.14")
result = interpn(self.points, self.lookup_table, inputs,
method=self.method, bounds_error=self.bounds_error,
fill_value=self.fill_value)
# return_units not respected when points has no units
if (isinstance(self.lookup_table, u.Quantity) and
not isinstance(self.points[0], u.Quantity)):
result = result * self.lookup_table.unit
if self.n_outputs == 1:
result = result.reshape(shape)
else:
result = [r.reshape(shape) for r in result]
return result
示例6: get_Rain
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import interpn [as 別名]
def get_Rain(self, time, elev, inIDs):
"""
Get rain value for a given period and perform interpolation from regular grid to unstructured TIN one.
Parameters
----------
time : float
Requested time interval rain map to load.
elev : float
Unstructured grid (TIN) Z coordinates.
inDs : integer
List of unstructured vertices contained in each partition.
Returns:
- tinRain - numpy array containing the updated rainfall for the local domain.
"""
events = numpy.where((self.T_rain[:, 1] - time) <= 0)[0]
event = len(events)
if not (time >= self.T_rain[event, 0]) and not (time < self.T_rain[event, 1]):
raise ValueError("Problem finding the rain map to load!")
if self.orographic[event]:
if self.rzmax[event] <= 0:
tinRain = self._build_OrographicRain_map(event, elev, inIDs)
self.next_rain = min(time + self.ortime[event], self.T_rain[event, 1])
else:
tinRain = numpy.zeros(len(self.tXY[inIDs, 0]), dtype=float)
rainslope = (self.rmax[event] - self.rmin[event]) / self.rzmax[event]
tinRain = rainslope * elev[inIDs] + self.rmin[event]
tinRain[tinRain < 0.0] = 0.0
tinRain[tinRain > self.rmax[event]] = self.rmax[event]
self.next_rain = min(time + self.ortime[event], self.T_rain[event, 1])
elif self.Map_rain[event] == None:
tinRain = numpy.zeros(len(self.tXY[inIDs, 0]), dtype=float)
tinRain = self.rainVal[event]
self.next_rain = self.T_rain[event, 1]
else:
rainMap = pandas.read_csv(
str(self.Map_rain[event]),
sep=r"\s+",
engine="c",
header=None,
na_filter=False,
dtype=numpy.float,
low_memory=False,
)
rectRain = numpy.reshape(
rainMap.values, (len(self.regX), len(self.regY)), order="F"
)
tinRain = interpolate.interpn(
(self.regX, self.regY), rectRain, self.tXY[inIDs, :], method="linear"
)
self.next_rain = self.T_rain[event, 1]
return tinRain
示例7: _build_OrographicRain_map
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import interpn [as 別名]
def _build_OrographicRain_map(self, event, elev, inIDs):
"""
Build rain map using Smith & Barstad (2004) model for a given period and perform interpolation from regular grid to unstructured TIN one.
Args:
event: float rain event number.
elev : float unstructured grid (TIN) Z coordinates.
inDs : integernumpy array of unstructured vertices contained in each partition.
Returns:
- tinRain - numpy array containing the updated rainfall for the local domain.
"""
# Interpolate elevation on regular grid
distances, indices = self.tree.query(self.xyi, k=8)
if len(elev[indices].shape) == 3:
elev_vals = elev[indices][:, :, 0]
else:
elev_vals = elev[indices]
distances[distances < 0.0001] = 0.0001
with numpy.errstate(divide="ignore"):
oelev = numpy.average(elev_vals, weights=(1.0 / distances), axis=1)
onIDs = numpy.where(distances[:, 0] <= 0.0001)[0]
if len(onIDs) > 0:
oelev[onIDs] = elev[indices[onIDs, 0]]
oelev -= self.sealevel
oelev = oelev.clip(0)
regZ = numpy.reshape(oelev, (len(self.regX), len(self.regY)), order="F")
# Use Smith & Barstad model
rectRain = ormodel.compute(
regZ,
self.dx,
self.windx[event],
self.windy[event],
self.rmin[event],
self.rmax[event],
self.rbgd[event],
self.nm[event],
self.cw[event],
self.hw[event],
self.tauc[event],
self.tauf[event],
)
# Apply smoothing here
smthRain = gaussian_filter(rectRain, sigma=3)
# Interpolate
tinRain = interpolate.interpn(
(self.regX, self.regY), smthRain, self.tXY[inIDs, :], method="linear"
)
return tinRain
示例8: load_Tecto_map
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import interpn [as 別名]
def load_Tecto_map(self, time, inIDs):
"""
Load vertical displacement map for a given period and perform interpolation from regular grid to unstructured TIN one.
Args:
time : float requested time interval rain map to load.
inDs : integer numpy array of unstructured vertices contained in each partition.
Returns:
- tinDisp - numpy array containing the updated displacement rate for the local domain.
"""
events = numpy.where((self.T_disp[:, 1] - time) <= 0)[0]
event = len(events)
if not (time >= self.T_disp[event, 0]) and not (time < self.T_disp[event, 1]):
raise ValueError("Problem finding the displacements map to load!")
self.next_disp = self.T_disp[event, 1]
if self.injected_disps is not None or self.Map_disp[event] != None:
if self.injected_disps is not None:
dispMap = self.injected_disps
else:
dispMap = pandas.read_csv(
str(self.Map_disp[event]),
sep=r"\s+",
engine="c",
header=None,
na_filter=False,
dtype=numpy.float,
low_memory=False,
).values
rectDisp = numpy.reshape(
dispMap, (len(self.regX), len(self.regY)), order="F"
)
tinDisp = interpolate.interpn(
(self.regX, self.regY), rectDisp, self.tXY[inIDs, :], method="linear"
)
dt = self.T_disp[event, 1] - self.T_disp[event, 0]
if dt <= 0:
raise ValueError(
"Problem computing the displacements rate for event %d." % event
)
tinDisp = tinDisp / dt
else:
tinDisp = numpy.zeros(len(self.tXY[inIDs, 0]), dtype=float)
return tinDisp
示例9: fscaling3D
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import interpn [as 別名]
def fscaling3D(X_train, X_test, scpatchSize, iscalefactor):
afterSize = np.ceil(np.multiply(scpatchSize, iscalefactor)).astype(int)
# Prepare for the using of scipy.interpolation: create the coordinates of grid
if iscalefactor == 1:
return X_train, X_test, scpatchSize
else:
xaxis = np.linspace(0, afterSize[0], scpatchSize[0])
yaxis = np.linspace(0, afterSize[1], scpatchSize[1])
zaxis = np.linspace(0, afterSize[2], scpatchSize[2])
dAllx_train = None
dAllx_test = None
for ifold in range(len(X_train)):
lenTrain = X_train[ifold].shape[0]
lenTest = X_test[ifold].shape[0]
start = time.clock()
# no batch
inter_train0 = np.mgrid[0:lenTrain, 0:afterSize[0], 0:afterSize[1], 0:afterSize[2]]
inter_train1 = np.rollaxis(inter_train0, 0, 5)
inter_train = np.reshape(inter_train1, [inter_train0.size // 4, 4]) # 4 for the dimension of coordinates
zaxis_train = np.arange(lenTrain)
upedTrain = interpolate.interpn((zaxis_train, xaxis, yaxis, zaxis),
X_train[ifold],
inter_train, method='linear', bounds_error=False, fill_value=0)
dFoldx_train = np.reshape(upedTrain, [1, lenTrain, afterSize[0], afterSize[1], afterSize[2]])
inter_test0 = np.mgrid[0:lenTest, 0:afterSize[0], 0:afterSize[1], 0:afterSize[2]]
inter_test1 = np.rollaxis(inter_test0, 0, 5)
inter_test = np.reshape(inter_test1, [inter_test0.size // 4, 4]) # 4 for the dimension of coordinates
zaxis_test = np.arange(lenTest)
upedTest = interpolate.interpn((zaxis_test, xaxis, yaxis, zaxis),
X_test[ifold],
inter_test, method='linear', bounds_error=False, fill_value=0)
dFoldx_test = np.reshape(upedTest, [1, lenTest, afterSize[0], afterSize[1], afterSize[2]])
stop = time.clock()
print(stop-start)
if dAllx_train is None:
dAllx_train = dFoldx_train
else:
dAllx_train = np.concatenate((dAllx_train, dFoldx_train), axis=0)
if dAllx_test is None:
dAllx_test = dFoldx_test
else:
dAllx_test = np.concatenate((dAllx_test, dFoldx_test), axis=0)
return dAllx_train, dAllx_test, afterSize
示例10: elevate
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import interpn [as 別名]
def elevate(self, coord, method='linear',lonlat=False):
'''
Given a geographic coordinate, return an elevation from the DEM
Coord may be a sinlge coord (c = [lat,lon]) or multiples (c = [[lat,lon],[lat,lon],...]
'''
if not 'dem' in dir(self): # Check to see if dem is an attribute
self.logger.warning('There are no DEMs to interpolate from.') # If not, no dems have been read in
return np.zeros(coord.shape[0]) + -1234.5
if np.max(self.origindd[:,1]) == 179.0 and np.min(self.origindd[:,1]) == -180.0: # If DEM range crosses the dateline
coord[(coord < 0)] += 360.0 # Convert to -180 to 180 -> 0 to 360
# interpolated_elevation = interpn((1-D LON array, 1-D LAT array), 2-D elev array, coord array)
coord = np.array(coord) # Ensure coord is an array for the following line to work
if len(coord.shape) == 1: # If only one point is specified
coord = coord.reshape((1,2)) # Then make sure its a 2-D array of 1 by 2 [[x,y]]
if not lonlat: # If coords are given at LAT/LON (y,x), then switch to LON/LAT (x,y)
coord = self.geo_swap(coord) # Convert [[lat,lon],...] to [[lon, lat], ...]
# The following is to ensure interpn evaluates all the good, valid coordinates instead
# of throwing the baby out with the bath water.
elev = np.zeros(coord.shape[0]) + -1234.5 # Create a list of dummy elevations the same length as input list
elev2 = elev
# Get all valid coordinates
in_bounds = np.where((coord[:,1] > np.min(self.lats_1D)) & (coord[:,1] < np.max(self.lats_1D)) &
(coord[:,0] > np.min(self.lons_1D)) & (coord[:,0] < np.max(self.lons_1D)))[0]
self.logger.debug('Coord LAT range: {}'.format((np.min(coord[:,1]),np.max(coord[:,1]))))
self.logger.debug('Coord LON range: {}'.format((np.min(coord[:,0]),np.max(coord[:,0]))))
self.logger.debug('DEM LAT range: {}'.format((np.min(self.lats_1D),np.max(self.lats_1D))))
self.logger.debug('DEM LON range: {}'.format((np.min(self.lons_1D),np.max(self.lons_1D))))
self.logger.debug('Coord shape: {}'.format(coord.shape))
self.logger.debug('Elev size: {}'.format(elev.size))
self.logger.debug('In_bounds size: {}'.format(in_bounds.size))
if in_bounds.size < elev.size:
self.logger.warning('Some points may be outside of DEM boundary. Check coordinate list.')
if in_bounds.size > 0: # If there are any valid points, then do try the interpolation
try:
self.logger.info('Interpolating elevation points.')
elev[in_bounds] = interpn((self.lons_1D, self.lats_1D), self.dem, coord[in_bounds,:], method=method)
#f = spint.interp2d(self.lon_1D, self.lats_1D, self.dem)
#elev2[in_bounds] = f(coord[in_bounds,:])
except Exception as err:
self.logger.critical('Interpolation error: {}'.format(err))
good_heights = np.where(elev > -1234.5)[0] # Do stats on valid points only.
if good_heights.size > 0: # If there are good points then print stats
emin = np.round(np.min(elev[good_heights]),2)
emean = np.round(np.mean(elev[good_heights]),2)
emax = np.round(np.max(elev[good_heights]),2)
self.logger.info('Elevation stats (min/mean/max): {}/{}/{}'.format(emin,emean,emax))
else:
self.logger.info('No valid points found.')
return elev # END OF ELEVATE
示例11: grid2sphere
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import interpn [as 別名]
def grid2sphere(arr, x, dx, C):
"""
Projects 3d array onto a sphere
Parameters
----------
arr : `numpy.ndarray` [`float`], (nx, ny, nz)
Input function to be projected
x : `list` [`numpy.ndarray` [`float`]], of shapes [(nx,), (ny,), (nz,)]
Vectors defining mesh of <arr>
dx : `list` [`numpy.ndarray` [`float`]], of shapes [(3,), (3,), (3,)]
Basis in which to orient sphere. Centre of sphere will be at `C*dx[2]`
and mesh of output array will be defined by the first two vectors
C : `float`
Radius of sphere
Returns
-------
out : `numpy.ndarray` [`float`], (nx, ny)
If y is the point on the line between `i*dx[0]+j*dx[1]` and `C*dx[2]`
which also lies on the sphere of radius `C` from `C*dx[2]` then:
`out[i,j] = arr(y)`
Interpolation on arr is linear.
"""
if C in (None, 0) or x[2].size == 1:
if arr.ndim == 2:
return arr
elif arr.shape[2] == 1:
return arr[:, :, 0]
y = to_mesh((x[0], x[1], array([0])), dx).reshape(-1, 3)
if C is not None: # project on line to centre
w = 1 / (1 + (y ** 2).sum(-1) / C ** 2)
y *= w[:, None]
if dx is None:
y[:, 2] = C * (1 - w)
else:
y += C * (1 - w)[:, None] * dx[2]
out = interpn(x, arr, y, method="linear", bounds_error=False, fill_value=0)
return out.reshape(x[0].size, x[1].size)