當前位置: 首頁>>代碼示例>>Python>>正文


Python interpolate.interp1d方法代碼示例

本文整理匯總了Python中scipy.interpolate.interp1d方法的典型用法代碼示例。如果您正苦於以下問題:Python interpolate.interp1d方法的具體用法?Python interpolate.interp1d怎麽用?Python interpolate.interp1d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.interpolate的用法示例。


在下文中一共展示了interpolate.interp1d方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: validate_on_lfw

# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import interp1d [as 別名]
def validate_on_lfw(model, lfw_160_path):
    # Read the file containing the pairs used for testing
    pairs = lfw.read_pairs('validation-LFW-pairs.txt')
    # Get the paths for the corresponding images
    paths, actual_issame = lfw.get_paths(lfw_160_path, pairs)
    num_pairs = len(actual_issame)

    all_embeddings = np.zeros((num_pairs * 2, 512), dtype='float32')
    for k in tqdm.trange(num_pairs):
        img1 = cv2.imread(paths[k * 2], cv2.IMREAD_COLOR)[:, :, ::-1]
        img2 = cv2.imread(paths[k * 2 + 1], cv2.IMREAD_COLOR)[:, :, ::-1]
        batch = np.stack([img1, img2], axis=0)
        embeddings = model.eval_embeddings(batch)
        all_embeddings[k * 2: k * 2 + 2, :] = embeddings

    tpr, fpr, accuracy, val, val_std, far = lfw.evaluate(
        all_embeddings, actual_issame, distance_metric=1, subtract_mean=True)

    print('Accuracy: %2.5f+-%2.5f' % (np.mean(accuracy), np.std(accuracy)))
    print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))

    auc = metrics.auc(fpr, tpr)
    print('Area Under Curve (AUC): %1.3f' % auc)
    eer = brentq(lambda x: 1. - x - interpolate.interp1d(fpr, tpr)(x), 0., 1.)
    print('Equal Error Rate (EER): %1.3f' % eer) 
開發者ID:ppwwyyxx,項目名稱:Adversarial-Face-Attack,代碼行數:27,代碼來源:face_attack.py

示例2: calclogf

# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import interp1d [as 別名]
def calclogf(self):
        """
        # wavelength dependence, from Table 19 in Leinert et al 1998
        # interpolated w/ a quadratic in log-log space
        Returns:
            interpolant (object):
                a 1D quadratic interpolant of intensity vs wavelength

        """
        self.zodi_lam = np.array([0.2, 0.3, 0.4, 0.5, 0.7, 0.9, 1.0, 1.2, 2.2, 3.5,
                4.8, 12, 25, 60, 100, 140]) # um
        self.zodi_Blam = np.array([2.5e-8, 5.3e-7, 2.2e-6, 2.6e-6, 2.0e-6, 1.3e-6,
                1.2e-6, 8.1e-7, 1.7e-7, 5.2e-8, 1.2e-7, 7.5e-7, 3.2e-7, 1.8e-8,
                3.2e-9, 6.9e-10]) # W/m2/sr/um
        x = np.log10(self.zodi_lam)
        y = np.log10(self.zodi_Blam)
        return interp1d(x, y, kind='quadratic') 
開發者ID:dsavransky,項目名稱:EXOSIMS,代碼行數:19,代碼來源:Stark.py

示例3: apply_sync

# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import interp1d [as 別名]
def apply_sync(sync_file, times, forward=True):
    """
    :param sync_file: probe sync file (usually of the form _iblrig_ephysData.raw.imec1.sync.npy)
    :param times: times in seconds to interpolate
    :param forward: if True goes from probe time to session time, from session time to probe time
    otherwise
    :return: interpolated times
    """
    sync_points = np.load(sync_file)
    if forward:
        fcn = interp1d(sync_points[:, 0],
                       sync_points[:, 1], fill_value='extrapolate')
    else:
        fcn = interp1d(sync_points[:, 1],
                       sync_points[:, 0], fill_value='extrapolate')
    return fcn(times) 
開發者ID:int-brain-lab,項目名稱:ibllib,代碼行數:18,代碼來源:sync_probes.py

示例4: resampling_by_interpolate

# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import interp1d [as 別名]
def resampling_by_interpolate(self, x):
        """Resampling base on 1st order interpolation

        Parameters
        ---------
        x : array, shape ('int(len(x) * f0rate)')
            array of wsolaed waveform

        Returns
        ---------
        wsolaed: array, shape (`len(x)`)
            Array of resampled (F0 transformed) waveform sequence

        """

        # interpolate
        wedlen = len(x)
        intpfunc = interp1d(np.arange(wedlen), x, kind=1)
        x_new = np.arange(0.0, wedlen - 1, self.f0rate)
        resampled = intpfunc(x_new)

        return resampled 
開發者ID:k2kobayashi,項目名稱:sprocket,代碼行數:24,代碼來源:shifter.py

示例5: highres

# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import interp1d [as 別名]
def highres(y,kind='cubic',res=100):
    '''
    Interpolate data onto a higher resolution grid by a factor of *res*

    Args:
        y (1d array/list): signal to be interpolated
        kind (str): order of interpolation (see docs for scipy.interpolate.interp1d)
        res (int): factor to increase resolution of data via linear interpolation
    
    Returns:
        shift (float): offset between target and reference signal 
    '''
    y = np.array(y)
    x = np.arange(0, y.shape[0])
    f = interp1d(x, y,kind='cubic')
    xnew = np.linspace(0, x.shape[0]-1, x.shape[0]*res)
    ynew = f(xnew)
    return xnew,ynew 
開發者ID:pearsonkyle,項目名稱:Signal-Alignment,代碼行數:20,代碼來源:signal_alignment.py

示例6: _resample_regressor

# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import interp1d [as 別名]
def _resample_regressor(hr_regressor, hr_frame_times, frame_times):
    """this function sub-samples the regressors at frame times

    Parameters
    ----------
    hr_regressor : array of shape(n_samples),
        the regressor time course sampled at high temporal resolution
    hr_frame_times : array of shape(n_samples),
        the corresponding time stamps
    frame_times: array of shape(n_scans),
         the desired time stamps

    Returns
    -------
    regressor: array of shape(n_scans)
         the resampled regressor
    """
    from scipy.interpolate import interp1d
    f = interp1d(hr_frame_times, hr_regressor)
    return f(frame_times).T 
開發者ID:bids-standard,項目名稱:pybids,代碼行數:22,代碼來源:hrf.py

示例7: _advect_surface

# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import interp1d [as 別名]
def _advect_surface(self, dt):

        if self.top:
            # Extract top surface
            x = self.model.mesh.data[self.top.data][:, 0]
            y = self.model.mesh.data[self.top.data][:, 1]

            # Extract velocities from top
            vx = self.model.velocityField.data[self.top.data][:, 0]
            vy = self.model.velocityField.data[self.top.data][:, 1]

            # Advect top surface
            x2 = x + vx * nd(dt)
            y2 = y + vy * nd(dt)

            # Spline top surface
            f = interp1d(x2, y2, kind='cubic', fill_value='extrapolate')

            self.TField.data[self.top.data, 0] = f(x)
        comm.Barrier()
        self.TField.syncronise() 
開發者ID:underworldcode,項目名稱:UWGeodynamics,代碼行數:23,代碼來源:_freesurface.py

示例8: compute_precision_score_mapping

# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import interp1d [as 別名]
def compute_precision_score_mapping(thresh, prec, score):
  ind = np.argsort(thresh);
  thresh = thresh[ind];
  prec = prec[ind];
  for i in xrange(1, len(prec)):
    prec[i] = max(prec[i], prec[i-1]);
  
  indexes = np.unique(thresh, return_index=True)[1]
  indexes = np.sort(indexes);
  thresh = thresh[indexes]
  prec = prec[indexes]
  
  thresh = np.vstack((min(-1000, min(thresh)-1), thresh[:, np.newaxis], max(1000, max(thresh)+1)));
  prec = np.vstack((prec[0], prec[:, np.newaxis], prec[-1]));
  
  f = interp1d(thresh[:,0], prec[:,0])
  val = f(score)
  return val 
開發者ID:s-gupta,項目名稱:visual-concepts,代碼行數:20,代碼來源:cap_eval_utils.py

示例9: load_spectrum

# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import interp1d [as 別名]
def load_spectrum(filename, grid):
    """
    Load a single spectrum
    """
    file_in = pyfits.open(filename)
    wl = np.array(file_in[0].data[2])
    flux = np.array(file_in[0].data[0])
    ivar = np.array((file_in[0].data[1]))
    # correct for radial velocity of star
    redshift = file_in[0].header['Z']
    wl_shifted = wl - redshift * wl
    # resample
    flux_rs = (interpolate.interp1d(wl_shifted, flux))(grid)
    ivar_rs = (interpolate.interp1d(wl_shifted, ivar))(grid)
    ivar_rs[ivar_rs < 0] = 0. # in interpolating you can end up with neg
    return flux_rs, ivar_rs 
開發者ID:annayqho,項目名稱:TheCannon,代碼行數:18,代碼來源:lamost.py

示例10: get_tukeyQcrit

# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import interp1d [as 別名]
def get_tukeyQcrit(k, df, alpha=0.05):
    '''
    return critical values for Tukey's HSD (Q)

    Parameters
    ----------
    k : int in {2, ..., 10}
        number of tests
    df : int
        degrees of freedom of error term
    alpha : {0.05, 0.01}
        type 1 error, 1-confidence level



    not enough error checking for limitations
    '''
    if alpha == 0.05:
        intp = interpolate.interp1d(crows, cv005[:,k-2])
    elif alpha == 0.01:
        intp = interpolate.interp1d(crows, cv001[:,k-2])
    else:
        raise ValueError('only implemented for alpha equal to 0.01 and 0.05')
    return intp(df) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:26,代碼來源:multicomp.py

示例11: percentileofscore

# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import interp1d [as 別名]
def percentileofscore(data, score):
    """Return the percentile-position of score relative to data.

    score: Array of scores at which the percentile is computed.

    Return percentiles (0-100).

    Example
            r = randn(50)
        x = linspace(-2,2,100)
        percentileofscore(r,x)

    Raise an error if the score is outside the range of data.
    """
    cdf = empiricalcdf(data)
    interpolator = interpolate.interp1d(np.sort(data), np.sort(cdf))
    return interpolator(score)*100. 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:19,代碼來源:stats_dhuard.py

示例12: monotone_fn_inverter

# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import interp1d [as 別名]
def monotone_fn_inverter(fn, x, vectorized=True, **keywords):
    """
    Given a monotone function fn (no checking is done to verify monotonicity)
    and a set of x values, return an linearly interpolated approximation
    to its inverse from its values on x.
    """
    x = np.asarray(x)
    if vectorized:
        y = fn(x, **keywords)
    else:
        y = []
        for _x in x:
            y.append(fn(_x, **keywords))
        y = np.array(y)

    a = np.argsort(y)

    return interp1d(y[a], x[a]) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:20,代碼來源:empirical_distribution.py

示例13: _resample_regressor

# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import interp1d [as 別名]
def _resample_regressor(hr_regressor, hr_frame_times, frame_times):
    """ this function sub-samples the regressors at frame times

    Parameters
    ----------
    hr_regressor : array of shape(n_samples),
        the regressor time course sampled at high temporal resolution

    hr_frame_times : array of shape(n_samples),
        the corresponding time stamps

    frame_times: array of shape(n_scans),
         the desired time stamps

    Returns
    -------
    regressor: array of shape(n_scans)
         the resampled regressor
    """
    from scipy.interpolate import interp1d
    f = interp1d(hr_frame_times, hr_regressor)
    return f(frame_times).T 
開發者ID:nilearn,項目名稱:nistats,代碼行數:24,代碼來源:hemodynamic_models.py

示例14: test_linear

# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import interp1d [as 別名]
def test_linear(self):
        """ Check the actual implementation of linear interpolation.
        """

        interp10 = interp1d(self.x10, self.y10)
        assert_array_almost_equal(
            interp10(self.x10),
            self.y10,
        )
        assert_array_almost_equal(
            interp10(1.2),
            np.array([1.2]),
        )
        assert_array_almost_equal(
            interp10([2.4, 5.6, 6.0]),
            np.array([2.4, 5.6, 6.0]),
        ) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:19,代碼來源:test_interpolate.py

示例15: test_cubic

# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import interp1d [as 別名]
def test_cubic(self):
        """ Check the actual implementation of spline interpolation.
        """

        interp10 = interp1d(self.x10, self.y10, kind='cubic')
        assert_array_almost_equal(
            interp10(self.x10),
            self.y10,
        )
        assert_array_almost_equal(
            interp10(1.2),
            np.array([1.2]),
        )
        assert_array_almost_equal(
            interp10([2.4, 5.6, 6.0]),
            np.array([2.4, 5.6, 6.0]),
        ) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:19,代碼來源:test_interpolate.py


注:本文中的scipy.interpolate.interp1d方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。