本文整理匯總了Python中scipy.interpolate.PchipInterpolator方法的典型用法代碼示例。如果您正苦於以下問題:Python interpolate.PchipInterpolator方法的具體用法?Python interpolate.PchipInterpolator怎麽用?Python interpolate.PchipInterpolator使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.interpolate
的用法示例。
在下文中一共展示了interpolate.PchipInterpolator方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import PchipInterpolator [as 別名]
def __init__(self, cachedir=None, **specs):
#start the outspec
self._outspec = {}
# cache directory
self.cachedir = get_cache_dir(cachedir)
self._outspec['cachedir'] = self.cachedir
specs['cachedir'] = self.cachedir
# load the vprint function (same line in all prototype module constructors)
self.vprint = vprint(specs.get('verbose', True))
#Define Phase Function Inverse
betas = np.linspace(start=0.,stop=np.pi,num=1000,endpoint=True)*u.rad
Phis = self.calc_Phi(betas)
self.betaFunction = PchipInterpolator(-Phis,betas) #the -Phis ensure the function monotonically increases
return
示例2: calc_beta
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import PchipInterpolator [as 別名]
def calc_beta(self,Phi):
""" Calculates the Phase angle based on the assumed planet phase function
Args:
Phi (float) - Phase angle function value ranging from 0 to 1
Returns:
beta (float) - Phase angle from 0 rad to pi rad
"""
beta = self.betaFunction(-Phi)
#Note: the - is because betaFunction uses -Phi when calculating the Phase Function
#This is because PchipInterpolator used requires monotonically increasing function
return beta
示例3: interp_array
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import PchipInterpolator [as 別名]
def interp_array(arr,interp_val=10):
x=np.arange(0, len(arr), 1)
xx=np.arange(0, len(arr)-1, 1/interp_val)
q=pchip(x,arr)
return q(xx)
示例4: repanel_current_airfoil
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import PchipInterpolator [as 別名]
def repanel_current_airfoil(self, n_points_per_side=100):
# Returns a repaneled version of the airfoil with cosine-spaced coordinates on the upper and lower surfaces.
# Inputs:
# # n_points_per_side is the number of points PER SIDE (upper and lower) of the airfoil. 100 is a good number.
# Notes: The number of points defining the final airfoil will be n_points_per_side*2-1,
# since one point (the leading edge point) is shared by both the upper and lower surfaces.
upper_original_coors = self.upper_coordinates() # Note: includes leading edge point, be careful about duplicates
lower_original_coors = self.lower_coordinates() # Note: includes leading edge point, be careful about duplicates
# Find distances between coordinates, assuming linear interpolation
upper_distances_between_points = np.sqrt(
np.power(upper_original_coors[:-1, 0] - upper_original_coors[1:, 0], 2) +
np.power(upper_original_coors[:-1, 1] - upper_original_coors[1:, 1], 2)
)
lower_distances_between_points = np.sqrt(
np.power(lower_original_coors[:-1, 0] - lower_original_coors[1:, 0], 2) +
np.power(lower_original_coors[:-1, 1] - lower_original_coors[1:, 1], 2)
)
upper_distances_from_TE = np.hstack((0, np.cumsum(upper_distances_between_points)))
lower_distances_from_LE = np.hstack((0, np.cumsum(lower_distances_between_points)))
upper_distances_from_TE_normalized = upper_distances_from_TE / upper_distances_from_TE[-1]
lower_distances_from_LE_normalized = lower_distances_from_LE / lower_distances_from_LE[-1]
# Generate a cosine-spaced list of points from 0 to 1
s = cosspace(n_points=n_points_per_side)
x_upper_func = sp_interp.PchipInterpolator(x=upper_distances_from_TE_normalized, y=upper_original_coors[:, 0])
y_upper_func = sp_interp.PchipInterpolator(x=upper_distances_from_TE_normalized, y=upper_original_coors[:, 1])
x_lower_func = sp_interp.PchipInterpolator(x=lower_distances_from_LE_normalized, y=lower_original_coors[:, 0])
y_lower_func = sp_interp.PchipInterpolator(x=lower_distances_from_LE_normalized, y=lower_original_coors[:, 1])
x_coors = np.hstack((x_upper_func(s), x_lower_func(s)[1:]))
y_coors = np.hstack((y_upper_func(s), y_lower_func(s)[1:]))
coordinates = np.column_stack((x_coors, y_coors))
self.coordinates = coordinates
示例5: __init__
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import PchipInterpolator [as 別名]
def __init__(self, ds, fractions, order=3, monotonic=True):
self.order = order
self.monotonic = monotonic
self.parameters = {}
ds = list(ds)
fractions = list(fractions)
if len(ds) == len(fractions)+1:
# size classes, the last point will be zero
fractions.insert(0, 0.0)
self.d_minimum = min(ds)
elif ds[0] != 0:
ds = [0] + ds
if len(ds) != len(fractions):
fractions = [0] + fractions
self.d_minimum = 0.0
self.ds = ds
self.fractions = fractions
self.d_excessive = max(ds)
self.fraction_cdf = cumsum(fractions)
if self.monotonic:
from scipy.interpolate import PchipInterpolator
globals()['PchipInterpolator'] = PchipInterpolator
self.cdf_spline = PchipInterpolator(ds, self.fraction_cdf, extrapolate=True)
self.pdf_spline = PchipInterpolator(ds, self.fraction_cdf, extrapolate=True).derivative(1)
else:
from scipy.interpolate import UnivariateSpline
globals()['UnivariateSpline'] = UnivariateSpline
self.cdf_spline = UnivariateSpline(ds, self.fraction_cdf, ext=3, s=0)
self.pdf_spline = UnivariateSpline(ds, self.fraction_cdf, ext=3, s=0).derivative(1)
# The pdf basis integral splines will be stored here
self.basis_integrals = {}
示例6: _pdf_basis_integral
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import PchipInterpolator [as 別名]
def _pdf_basis_integral(self, d, n):
# there are slight errors with this approach - but they are OK to
# ignore.
# DO NOT evaluate the first point as it leads to inf values; just set
# it to zero
from fluids.numerics import numpy as np
if n not in self.basis_integrals:
ds = np.array(self.ds[1:])
pdf_vals = self.pdf_spline(ds)
basis_integral = ds**n*pdf_vals
if self.monotonic:
self.basis_integrals[n] = PchipInterpolator(ds, basis_integral, extrapolate=True).antiderivative(1)
else:
self.basis_integrals[n] = UnivariateSpline(ds, basis_integral, ext=3, s=0).antiderivative(n=1)
return max(float(self.basis_integrals[n](d)), 0.0)
示例7: __init__
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import PchipInterpolator [as 別名]
def __init__(self, x, y, cutOutWindSpeed):
self.first_value = x[0]
self.last_value = x[-1]
self.interpolator = interpolate.PchipInterpolator(x,y,extrapolate =False)
self.cutOutWindSpeed = cutOutWindSpeed
示例8: get_repaneled_airfoil
# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import PchipInterpolator [as 別名]
def get_repaneled_airfoil(self, n_points_per_side=100):
# Returns a repaneled version of the airfoil with cosine-spaced coordinates on the upper and lower surfaces.
# Inputs:
# # n_points_per_side is the number of points PER SIDE (upper and lower) of the airfoil. 100 is a good number.
# Notes: The number of points defining the final airfoil will be n_points_per_side*2-1,
# since one point (the leading edge point) is shared by both the upper and lower surfaces.
upper_original_coors = self.upper_coordinates() # Note: includes leading edge point, be careful about duplicates
lower_original_coors = self.lower_coordinates() # Note: includes leading edge point, be careful about duplicates
# Find distances between coordinates, assuming linear interpolation
upper_distances_between_points = np.sqrt(
np.power(upper_original_coors[:-1, 0] - upper_original_coors[1:, 0], 2) +
np.power(upper_original_coors[:-1, 1] - upper_original_coors[1:, 1], 2)
)
lower_distances_between_points = np.sqrt(
np.power(lower_original_coors[:-1, 0] - lower_original_coors[1:, 0], 2) +
np.power(lower_original_coors[:-1, 1] - lower_original_coors[1:, 1], 2)
)
upper_distances_from_TE = np.hstack((0, np.cumsum(upper_distances_between_points)))
lower_distances_from_LE = np.hstack((0, np.cumsum(lower_distances_between_points)))
upper_distances_from_TE_normalized = upper_distances_from_TE / upper_distances_from_TE[-1]
lower_distances_from_LE_normalized = lower_distances_from_LE / lower_distances_from_LE[-1]
# Generate a cosine-spaced list of points from 0 to 1
s = cosspace(n_points=n_points_per_side)
x_upper_func = sp_interp.PchipInterpolator(x=upper_distances_from_TE_normalized, y=upper_original_coors[:, 0])
y_upper_func = sp_interp.PchipInterpolator(x=upper_distances_from_TE_normalized, y=upper_original_coors[:, 1])
x_lower_func = sp_interp.PchipInterpolator(x=lower_distances_from_LE_normalized, y=lower_original_coors[:, 0])
y_lower_func = sp_interp.PchipInterpolator(x=lower_distances_from_LE_normalized, y=lower_original_coors[:, 1])
x_coors = np.hstack((x_upper_func(s), x_lower_func(s)[1:]))
y_coors = np.hstack((y_upper_func(s), y_lower_func(s)[1:]))
coordinates = np.column_stack((x_coors, y_coors))
# Make a new airfoil with the coordinates
name = self.name + ", repaneled to " + str(n_points_per_side) + " pts"
new_airfoil = Airfoil(name=name, coordinates=coordinates, repanel=False)
return new_airfoil