當前位置: 首頁>>代碼示例>>Python>>正文


Python interpolate.LSQUnivariateSpline方法代碼示例

本文整理匯總了Python中scipy.interpolate.LSQUnivariateSpline方法的典型用法代碼示例。如果您正苦於以下問題:Python interpolate.LSQUnivariateSpline方法的具體用法?Python interpolate.LSQUnivariateSpline怎麽用?Python interpolate.LSQUnivariateSpline使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.interpolate的用法示例。


在下文中一共展示了interpolate.LSQUnivariateSpline方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: spline_filter

# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import LSQUnivariateSpline [as 別名]
def spline_filter(data, nsegs):
    """Detrend a possibly periodic timeseries by fitting a coarse piecewise
       smooth cubic spline

    Parameters
    ----------
    data : ndarray
        list of observed values
    nsegs : number
        number of spline segments

    Returns
    -------
    filtered : ndarray

    """
    index = np.arange(len(data))
    nknots = max(2, nsegs + 1)
    knots = np.linspace(index[0], index[-1], nknots + 2)[1:-2]
    return LSQUnivariateSpline(index, data, knots)(index) 
開發者ID:welch,項目名稱:seasonal,代碼行數:22,代碼來源:trend.py

示例2: update_normal_vector

# 需要導入模塊: from scipy import interpolate [as 別名]
# 或者: from scipy.interpolate import LSQUnivariateSpline [as 別名]
def update_normal_vector(self):
        """
        update the constraint by approximating the
        loglikelihood hypersurface as a spline in
        each dimension.
        This is an approximation which
        improves as the algorithm proceeds
        """
        n = self.ensemble[0].dimension
        tracers_array = np.zeros((len(self.ensemble),n))
        for i,samp in enumerate(self.ensemble):
            tracers_array[i,:] = samp.values
        V_vals = np.atleast_1d([p.logL for p in self.ensemble])
        
        self.normal = []
        for i,x in enumerate(tracers_array.T):
            # sort the values
#            self.normal.append(lambda x: -x)
            idx = x.argsort()
            xs = x[idx]
            Vs = V_vals[idx]
            # remove potential duplicate entries
            xs, ids = np.unique(xs, return_index = True)
            Vs = Vs[ids]
            # pick only finite values
            idx = np.isfinite(Vs)
            Vs  = Vs[idx]
            xs  = xs[idx]
            # filter to within the 90% range of the Pvals
            Vl,Vh = np.percentile(Vs,[5,95])
            (idx,) = np.where(np.logical_and(Vs > Vl,Vs < Vh))
            Vs = Vs[idx]
            xs = xs[idx]
            # Pick knots for this parameters: Choose 5 knots between
            # the 1st and 99th percentiles (heuristic tuning WDP)
            knots = np.percentile(xs,np.linspace(1,99,5))
            # Guesstimate the length scale for numerical derivatives
            dimwidth = knots[-1]-knots[0]
            delta = 0.1 * dimwidth / len(idx)
            # Apply a Savtzky-Golay filter to the likelihoods (low-pass filter)
            window_length = len(idx)//2+1 # Window for Savtzky-Golay filter
            if window_length%2 == 0: window_length += 1
            f = savgol_filter(Vs, window_length,
                              5, # Order of polynominal filter
                              deriv=1, # Take first derivative
                              delta=delta, # delta for numerical deriv
                              mode='mirror' # Reflective boundary conds.
                              )
            # construct a LSQ spline interpolant
            self.normal.append(LSQUnivariateSpline(xs, f, knots, ext = 3, k = 3))
            if self.DEBUG: np.savetxt('dlogL_spline_%d.txt'%i,np.column_stack((xs,Vs,self.normal[-1](xs),f))) 
開發者ID:johnveitch,項目名稱:cpnest,代碼行數:53,代碼來源:proposal.py


注:本文中的scipy.interpolate.LSQUnivariateSpline方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。