本文整理匯總了Python中scipy.integrate.simps方法的典型用法代碼示例。如果您正苦於以下問題:Python integrate.simps方法的具體用法?Python integrate.simps怎麽用?Python integrate.simps使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.integrate
的用法示例。
在下文中一共展示了integrate.simps方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: bunching
# 需要導入模塊: from scipy import integrate [as 別名]
# 或者: from scipy.integrate import simps [as 別名]
def bunching(p_array, lambda_mod, smooth_sigma=None):
"""
Function calculates bunching factor for wavelength lambda_mod
$b(\lambda) = \frac{1}{N_0}\left| \langle e^{- i\frac{ 2 \pi}{\lambda} s} N(s)\rangle \right|$
:param p_array: ParticleArray
:param lambda_mod: wavelength
:param smooth_sigma: smoothing parameter
:return: bunching factor
"""
if smooth_sigma is None:
smooth_sigma = min(np.std(p_array.tau())*0.01, lambda_mod*0.1)
B = s_to_cur(p_array.tau(), sigma=smooth_sigma, q0=np.sum(p_array.q_array), v=speed_of_light)
b = np.abs(simps(B[:, 1] / speed_of_light * np.exp(-1j * 2 * np.pi / lambda_mod * B[:, 0]), B[:, 0])) / np.sum(
p_array.q_array)
return b
示例2: slice_bunching
# 需要導入模塊: from scipy import integrate [as 別名]
# 或者: from scipy.integrate import simps [as 別名]
def slice_bunching(tau, charge, lambda_mod, smooth_sigma=None):
"""
Function calculates bunching factor for wavelength lambda_mod
$b(\lambda) = \frac{1}{N_0}\left| \langle e^{- i\frac{ 2 \pi}{\lambda} s} N(s)\rangle \right|$
:param p_array: ParticleArray
:param lambda_mod: wavelength
:param smooth_sigma: smoothing parameter
:return: bunching factor
"""
if smooth_sigma is None:
smooth_sigma = lambda_mod/10.
B = s_to_cur(tau, sigma=smooth_sigma, q0=charge, v=speed_of_light)
b = np.abs(simps(B[:, 1] / speed_of_light * np.exp(-1j * 2 * np.pi / lambda_mod * B[:, 0]), B[:, 0])) / charge
return b
示例3: p_quad_values
# 需要導入模塊: from scipy import integrate [as 別名]
# 或者: from scipy.integrate import simps [as 別名]
def p_quad_values(self, mode, xvec, pvec):
r"""Calculates the discretized p-quadrature probability distribution of the specified mode.
Args:
mode (int): the mode to calculate the p-quadrature probability values of
xvec (array): array of discretized :math:`x` quadrature values
pvec (array): array of discretized :math:`p` quadrature values
Returns:
array: 1D array of size len(pvec), containing reduced p-quadrature
probability values for a specified range of x and p.
"""
W = self.wigner(mode, xvec, pvec)
y = []
for i in range(0, len(pvec)):
res = simps(W[i, : len(xvec)], xvec)
y.append(res)
return np.array(y)
示例4: x_quad_values
# 需要導入模塊: from scipy import integrate [as 別名]
# 或者: from scipy.integrate import simps [as 別名]
def x_quad_values(self, mode, xvec, pvec):
r"""Calculates the discretized x-quadrature probability distribution of the specified mode.
Args:
mode (int): the mode to calculate the x-quadrature probability values of
xvec (array): array of discretized :math:`x` quadrature values
pvec (array): array of discretized :math:`p` quadrature values
Returns:
array: 1D array of size len(xvec), containing reduced x-quadrature
probability values for a specified range of x and p.
"""
W = self.wigner(mode, xvec, pvec)
y = []
for i in range(0, len(xvec)):
res = simps(W[: len(pvec), i], pvec)
y.append(res)
return np.array(y)
示例5: _integrate
# 需要導入模塊: from scipy import integrate [as 別名]
# 或者: from scipy.integrate import simps [as 別名]
def _integrate(self, y, f):
"""
Integrate `y` along axis=1, i.e. over freq axis for all T.
Parameters
----------
y : 2d array (nT, ndos) where nT = len(self.T), ndos = len(self.dos)
f : self.f, (len(self.dos),)
Returns
-------
array (nT,)
"""
mask = np.isnan(y)
if mask.any():
self._printwarn("HarmonicThermo._integrate: warning: "
" %i NaNs found in y!" %len(mask))
if self.fixnan:
self._printwarn("HarmonicThermo._integrate: warning: "
"fixing %i NaNs in y!" %len(mask))
y[mask] = self.nanfill
# this call signature works for scipy.integrate,{trapz,simps}
return self.integrator(y, x=f, axis=1)
示例6: expected
# 需要導入模塊: from scipy import integrate [as 別名]
# 或者: from scipy.integrate import simps [as 別名]
def expected(data, airFrame):
alpha, V, lift_to_drag = data
pdf = airFrame.pdf.score_samples(np.vstack([alpha.ravel(), V.ravel()]).T)
pdf = np.exp(pdf.reshape(lift_to_drag.shape))
expected_value = 0
numerator_list = []
denominator_list = []
for i in range(len(lift_to_drag)):
numerator = simps(lift_to_drag[i]*pdf[i], alpha[i])
denominator = simps(pdf[i], alpha[i])
numerator_list.append(numerator)
denominator_list.append(denominator)
numerator = simps(numerator_list, V[:, 0])
denominator = simps(denominator_list, V[:, 0])
expected_value = numerator/denominator
return(expected_value)
示例7: simps_approx
# 需要導入模塊: from scipy import integrate [as 別名]
# 或者: from scipy.integrate import simps [as 別名]
def simps_approx():
# Compute the left hand side analytically
loglhs = psi*a - b * np.log1p(np.exp(psi))
lhs = np.exp(loglhs)
# Compute the right hand side with quadrature
from scipy.integrate import simps
# Lay down a grid of omegas
# TODO: How should we choose the bins?
omegas = np.linspace(1e-15, 5, 1000)
# integrand = lambda om: 2**-b \
# * np.exp((a-b/2.)*psi 0 0.5*om*psi**2) \
# * polya_gamma_density(om, b, 0)
# y = map(integrand, omegas)
# rhs = simps(integrand, y)
logy = -b * np.log(2) + (a-b/2.) * psi -0.5*omegas*psi**2
logy += log_polya_gamma_density(omegas, b, 0, trunc=21)
y = np.exp(logy)
rhs = simps(y, omegas)
print("Numerical Quadrature")
print("log LHS: ", loglhs)
print("log RHS: ", np.log(rhs))
示例8: plot_density
# 需要導入模塊: from scipy import integrate [as 別名]
# 或者: from scipy.integrate import simps [as 別名]
def plot_density():
omegas = np.linspace(1e-16, 5, 1000)
logpomega = log_polya_gamma_density(omegas, b, 0, trunc=1000)
pomega = np.exp(logpomega).real
import matplotlib.pyplot as plt
plt.ion()
plt.figure()
plt.plot(omegas, pomega)
y = -b * np.log(2) + (a-b/2.) * psi -0.5*omegas*psi**2
from scipy.integrate import simps
Z = simps(pomega, omegas)
print("Z: ", Z)
示例9: get_dband_center
# 需要導入模塊: from scipy import integrate [as 別名]
# 或者: from scipy.integrate import simps [as 別名]
def get_dband_center(self, d_cols):
"""
Get d-band center of the DosX object.
Parameters:
-----------
d_cols: The column number range for d orbitals, int or tuple of int.
Examples:
---------
# The 5 - 9 columns are state density for d orbitals.
>>> dos.get_dband_center(d_cols=(5, 10))
"""
d_cols = (d_cols, d_cols+1) if type(d_cols) is int else d_cols
# 合並d軌道DOS
start, end = d_cols
yd = np.sum(self.data[:, start:end], axis=1)
#獲取feimi能級索引
for idx, E in enumerate(self.data[:, 0]):
if E >= 0:
nfermi = idx
break
E = self.data[: nfermi+1, 0] # negative inf to Fermi
dos = yd[: nfermi+1] # y values from negative inf to Fermi
# Use Simpson integration to get d-electron number
nelectro = simps(dos, E)
# Get total energy of dband
tot_E = simps(E*dos, E)
dband_center = tot_E/nelectro
self.dband_center = dband_center
return dband_center
示例10: flux_total
# 需要導入模塊: from scipy import integrate [as 別名]
# 或者: from scipy.integrate import simps [as 別名]
def flux_total(self):
C_fi = 3.9614e19 #ph/(sec * rad * GeV * A)
mrad = 1e-3 # transform rad to mrad
S = lambda w: 9.*sqrt(3)/8./pi*w*simps(kv(5./3.,linspace(w, 20, num=200)))
F = lambda eph: mrad*C_fi*self.energy*self.I*eph/self.eph_c*S(eph/self.eph_c)
return F
示例11: radiation_integrals
# 需要導入模塊: from scipy import integrate [as 別名]
# 或者: from scipy.integrate import simps [as 別名]
def radiation_integrals(lattice, twiss_0, nsuperperiod = 1):
#TODO: add I4 for rectangular magnets I4 = Integrate(2 Dx(z)*k(z)*h(z), Z)
n_points_element = 20
tws_elem = twiss_0
(I1, I2, I3, I4, I5) = (0., 0., 0., 0., 0.)
h = 0.
for elem in lattice.sequence:
if elem.__class__ in (SBend, RBend, Bend) and elem.l != 0:
Dx = []
Hinvariant = []
Z = []
h = elem.angle/elem.l
for z in np.linspace(0, elem.l, num=n_points_element, endpoint=True):
tws_z = elem.transfer_map(z)*tws_elem
Dx.append(tws_z.Dx)
Z.append(z)
Hx = (tws_z.gamma_x*tws_z.Dx*tws_z.Dx + 2.*tws_z.alpha_x*tws_z.Dxp*tws_z.Dx
+ tws_z.beta_x*tws_z.Dxp*tws_z.Dxp)
Hinvariant.append(Hx)
#H = array(h)
H2 = h*h
H3 = np.abs(h*h*h)
I1 += h*simps(np.array(Dx), Z)
I2 += H2*elem.l #simps(H2, Z)*nsuperperiod
I3 += H3*elem.l #simps(H3, Z)*nsuperperiod
I4 += h*(2*elem.k1 + H2)*simps(np.array(Dx), Z)
I5 += H3*simps(np.array(Hinvariant), Z)
tws_elem = elem.transfer_map*tws_elem
#if abs(tws_elem.beta_x - twiss_0.beta_x)>1e-7 or abs(tws_elem.beta_y - twiss_0.beta_y)>1e-7:
# print( "WARNING! Results may be wrong! radiation_integral() -> beta functions are not matching. ")
#return None
return (I1*nsuperperiod, I2*nsuperperiod, I3*nsuperperiod, I4*nsuperperiod, I5*nsuperperiod)
示例12: natural_chromaticity
# 需要導入模塊: from scipy import integrate [as 別名]
# 或者: from scipy.integrate import simps [as 別名]
def natural_chromaticity(lattice, tws_0, nsuperperiod = 1):
#edge_ksi_x, edge_ksi_y = edge_chromaticity(lattice, tws_0)
edge_ksi_x, edge_ksi_y = 0, 0
tws_elem = tws_0
#M = TransferMap()
integr_x = 0.
integr_y = 0.
for elem in lattice.sequence:
if elem.__class__ in [SBend, RBend, Bend, Quadrupole]:
bx = []
by = []
k = []
h = []
Z = []
for z in np.linspace(0, elem.l,num = 5, endpoint=True):
twiss_z = elem.transfer_map(z)*tws_elem
bx.append(twiss_z.beta_x)
by.append(twiss_z.beta_y)
k.append(elem.k1)
#print elem.l
if elem.__class__ != Quadrupole and elem.l != 0:
h.append(elem.angle/elem.l)
else:
h.append(0.)
Z.append(z)
H2 = np.array(h)*np.array(h)
X = np.array(bx)*(np.array(k)+ H2)
Y = -np.array(by)*np.array(k)
integr_x += simps(X, Z)
integr_y += simps(Y, Z)
elif elem.__class__ == Multipole:
twiss_z = elem.transfer_map*tws_elem
integr_x += twiss_z.beta_x*elem.kn[1]
integr_y -= twiss_z.beta_y*elem.kn[1]
tws_elem = elem.transfer_map*tws_elem
ksi_x = -(integr_x - edge_ksi_x)/(4*pi)
ksi_y = -(integr_y - edge_ksi_y)/(4*pi)
return np.array([ksi_x*nsuperperiod, ksi_y*nsuperperiod])
示例13: LossShape
# 需要導入模塊: from scipy import integrate [as 別名]
# 或者: from scipy.integrate import simps [as 別名]
def LossShape(bunch, wake):
"""
loss, spread, peak
dimensions:
wake - m , Volt/pC
out - V/pC;
"""
w = wake[1]
bi2 = bunch[1]
s = wake[0]
loss = simps(-bi2*w, s)
spread = np.sqrt(simps(bi2*(w + loss)**2, s))
peak = max(abs(w))
return loss, spread, peak
示例14: pipe_wake
# 需要導入模塊: from scipy import integrate [as 別名]
# 或者: from scipy.integrate import simps [as 別名]
def pipe_wake(z, current, tube_radius, tube_len, conductivity, tau, roughness, d_oxid):
Q = simps(current, z)/speed_of_light
print ("Charge = ", Q*1e12, "pC")
xb = -z[::-1]
yb = current[::-1]/(speed_of_light*Q)
Q = Q*1e12 #C->pC
ds=xb[3]-xb[0]
xb = np.append(xb, np.arange(1, 100001)*ds + xb[-1])
yb = np.append(yb, np.arange(1, 100001)*0)
# roughness and axid layer are here
eps_r = 2.
Ind = mu_0*((eps_r-1.)/eps_r*d_oxid + 0.01035*roughness)
# the result is in V
W = ResistiveZaZb(xb, yb, tube_radius, conductivity, tau, Ind)#*Q*L
W = W.real*Q*tube_len
n = len(current)
bunch = [xb[:n], yb[:n]]
wake = [xb[:n], W[:n]]
# postprocessing
L, S, P = LossShape(bunch, wake)
print ('Loss [V]: ', L)
print ('Spread [V]:', S)
print ('Peak [V]: ', P)
return bunch, wake
示例15: sample_normal_expectations
# 需要導入模塊: from scipy import integrate [as 別名]
# 或者: from scipy.integrate import simps [as 別名]
def sample_normal_expectations(self, gaussian_state):
"""Returns the expectation value E(f) and the variance var(f)
for some normal distribution X~N(mu, cov).
Args:
mu (array): means vector
cov (array): covariance matrix
func (function): function acting on the random variables X, P, XP,
returning a second order polynomial
Returns:
tuple: tuple of expectation value and variance.
"""
def _sample(func, correction=0, mu=None, cov=None):
"""wrapped function"""
if mu is None:
mu = gaussian_state[0]
if cov is None:
cov = gaussian_state[1]
X, P = np.mgrid[-7:7:0.01, -7:7:0.01]
grid = np.dstack((X, P))
XP = np.prod(grid, axis=2)
poly = func(X, P, XP)
PDF = multivariate_normal.pdf(grid, mu, cov)
Ex = simps(simps(poly * PDF, P[0]), X.T[0])
ExSq = simps(simps(poly ** 2 * PDF, P[0]), X.T[0])
var = ExSq - Ex ** 2 + correction
return Ex, var
return _sample