當前位置: 首頁>>代碼示例>>Python>>正文


Python fftpack.fftshift方法代碼示例

本文整理匯總了Python中scipy.fftpack.fftshift方法的典型用法代碼示例。如果您正苦於以下問題:Python fftpack.fftshift方法的具體用法?Python fftpack.fftshift怎麽用?Python fftpack.fftshift使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.fftpack的用法示例。


在下文中一共展示了fftpack.fftshift方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: from_recip

# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftshift [as 別名]
def from_recip(y):
    """
    Converts Fourier frequencies to spatial coordinates.

    Parameters
    ----------
    y : `list` [`numpy.ndarray` [`float`]], of shape [(nx,), (ny,), ...]
        List (or equivalent) of vectors which define a mesh in the dimension
        equal to the length of `x`

    Returns
    -------
    x : `list` [`numpy.ndarray` [`float`]], of shape [(nx,), (ny,), ...]
        List of vectors defining a mesh such that for a function, `f`, defined on
        the mesh given by `y`, ifft(f) is defined on the mesh given by `x`. 0 will be
        in the middle of `x`.
    """
    x = []
    for Y in y:
        if Y.size > 1:
            x.append(fftfreq(Y.size, Y.item(1) - Y.item(0)) * (2 * pi))
        else:
            x.append(array([0]))
        x[-1] = x[-1].astype(Y.dtype, copy=False)
    return [fftshift(X) for X in x] 
開發者ID:pyxem,項目名稱:diffsims,代碼行數:27,代碼來源:fourier_transform.py

示例2: SO3_ifft

# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftshift [as 別名]
def SO3_ifft(f_hat):
    """
    """
    b = len(f_hat)
    d = setup_d_transform(b)

    df_hat = [d[l] * f_hat[l][:, None, :] for l in range(len(d))]

    # Note: the frequencies where m=-B or n=-B are set to zero,
    # because they are not used in the forward transform either
    # (the forward transform is up to m=-l, l<B
    F = np.zeros((2 * b, 2 * b, 2 * b), dtype=complex)
    for l in range(b):
        F[b - l:b + l + 1, :,  b - l:b + l + 1] += df_hat[l]

    F = fftshift(F, axes=(0, 2))
    f = ifft2(F, axes=(0, 2))
    return f * 2 * (b ** 2) / np.pi 
開發者ID:AMLab-Amsterdam,項目名稱:lie_learn,代碼行數:20,代碼來源:SO3FFT_Naive.py

示例3: to_recip

# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftshift [as 別名]
def to_recip(x):
    """
    Converts spatial coordinates to Fourier frequencies.

    Parameters
    ----------
    x : `list` [`numpy.ndarray` [`float`]], of shape [(nx,), (ny,), ...]
        List (or equivalent) of vectors which define a mesh in the dimension
        equal to the length of `x`

    Returns
    -------
    y : `list` [`numpy.ndarray` [`float`]], of shape [(nx,), (ny,), ...]
        List of vectors defining a mesh such that for a function, `f`, defined on
        the mesh given by `x`, `fft(f)` is defined on the mesh given by `y`
    """
    y = []
    for X in x:
        if X.size > 1:
            y.append(fftfreq(X.size, X.item(1) - X.item(0)) * (2 * pi))
        else:
            y.append(array([0]))
        y[-1] = y[-1].astype(X.dtype, copy=False)
    return [fftshift(Y) for Y in y] 
開發者ID:pyxem,項目名稱:diffsims,代碼行數:26,代碼來源:fourier_transform.py

示例4: get_numpy

# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftshift [as 別名]
def get_numpy(shape, fftn_shape=None, **kwargs):
    import numpy.fft as numpy_fft

    f = {
        "fft2": numpy_fft.fft2,
        "ifft2": numpy_fft.ifft2,
        "rfft2": numpy_fft.rfft2,
        "irfft2": lambda X: numpy_fft.irfft2(X, s=shape),
        "fftshift": numpy_fft.fftshift,
        "ifftshift": numpy_fft.ifftshift,
        "fftfreq": numpy_fft.fftfreq,
    }
    if fftn_shape is not None:
        f["fftn"] = numpy_fft.fftn
    fft = SimpleNamespace(**f)

    return fft 
開發者ID:pySTEPS,項目名稱:pysteps,代碼行數:19,代碼來源:fft.py

示例5: get_scipy

# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftshift [as 別名]
def get_scipy(shape, fftn_shape=None, **kwargs):
    import numpy.fft as numpy_fft
    import scipy.fftpack as scipy_fft

    # use numpy implementation of rfft2/irfft2 because they have not been
    # implemented in scipy.fftpack
    f = {
        "fft2": scipy_fft.fft2,
        "ifft2": scipy_fft.ifft2,
        "rfft2": numpy_fft.rfft2,
        "irfft2": lambda X: numpy_fft.irfft2(X, s=shape),
        "fftshift": scipy_fft.fftshift,
        "ifftshift": scipy_fft.ifftshift,
        "fftfreq": scipy_fft.fftfreq,
    }
    if fftn_shape is not None:
        f["fftn"] = scipy_fft.fftn
    fft = SimpleNamespace(**f)

    return fft 
開發者ID:pySTEPS,項目名稱:pysteps,代碼行數:22,代碼來源:fft.py

示例6: convolve

# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftshift [as 別名]
def convolve(f, g):
    """
    FFT based convolution

    :param f: array
    :param g: array
    :return: array, (f * g)[n]
    """
    f_fft = fftpack.fftshift(fftpack.fftn(f))
    g_fft = fftpack.fftshift(fftpack.fftn(g))
    return fftpack.fftshift(fftpack.ifftn(fftpack.ifftshift(f_fft*g_fft))) 
開發者ID:ocelot-collab,項目名稱:ocelot,代碼行數:13,代碼來源:math_op.py

示例7: deconvolve

# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftshift [as 別名]
def deconvolve(f, g):
    """
    FFT based deconvolution

    :param f: array
    :param g: array
    :return: array,
    """
    f_fft = fftpack.fftshift(fftpack.fftn(f))
    g_fft = fftpack.fftshift(fftpack.fftn(g))
    return fftpack.fftshift(fftpack.ifftn(fftpack.ifftshift(f_fft/g_fft))) 
開發者ID:ocelot-collab,項目名稱:ocelot,代碼行數:13,代碼來源:math_op.py

示例8: test_definition

# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftshift [as 別名]
def test_definition(self):
        x = [0,1,2,3,4,-4,-3,-2,-1]
        y = [-4,-3,-2,-1,0,1,2,3,4]
        assert_array_almost_equal(fftshift(x),y)
        assert_array_almost_equal(ifftshift(y),x)
        x = [0,1,2,3,4,-5,-4,-3,-2,-1]
        y = [-5,-4,-3,-2,-1,0,1,2,3,4]
        assert_array_almost_equal(fftshift(x),y)
        assert_array_almost_equal(ifftshift(y),x) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:11,代碼來源:test_helper.py

示例9: test_inverse

# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftshift [as 別名]
def test_inverse(self):
        for n in [1,4,9,100,211]:
            x = random((n,))
            assert_array_almost_equal(ifftshift(fftshift(x)),x) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:6,代碼來源:test_helper.py

示例10: test_inverse

# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftshift [as 別名]
def test_inverse(self):
        for n in [1,4,9,100,211]:
            x = random.random((n,))
            assert_array_almost_equal(ifftshift(fftshift(x)),x) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:6,代碼來源:test_helper.py

示例11: generate_fractal_surface

# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftshift [as 別名]
def generate_fractal_surface(self, G):
        """Generate a 2D array with a fractal distribution.

        Args:
            G (class): Grid class instance - holds essential parameters describing the model.
        """

        if self.xs == self.xf:
            surfacedims = (self.ny, self.nz)
        elif self.ys == self.yf:
            surfacedims = (self.nx, self.nz)
        elif self.zs == self.zf:
            surfacedims = (self.nx, self.ny)

        self.fractalsurface = np.zeros(surfacedims, dtype=complextype)

        # Positional vector at centre of array, scaled by weighting
        v1 = np.array([self.weighting[0] * (surfacedims[0]) / 2, self.weighting[1] * (surfacedims[1]) / 2])

        # 2D array of random numbers to be convolved with the fractal function
        R = np.random.RandomState(self.seed)
        A = R.randn(surfacedims[0], surfacedims[1])

        # 2D FFT
        A = fftpack.fftn(A)
        # Shift the zero frequency component to the centre of the array
        A = fftpack.fftshift(A)

        # Generate fractal
        generate_fractal2D(surfacedims[0], surfacedims[1], G.nthreads, self.b, self.weighting, v1, A, self.fractalsurface)

        # Shift the zero frequency component to start of the array
        self.fractalsurface = fftpack.ifftshift(self.fractalsurface)
        # Take the real part (numerical errors can give rise to an imaginary part) of the IFFT
        self.fractalsurface = np.real(fftpack.ifftn(self.fractalsurface))
        # Scale the fractal volume according to requested range
        fractalmin = np.amin(self.fractalsurface)
        fractalmax = np.amax(self.fractalsurface)
        fractalrange = fractalmax - fractalmin
        self.fractalsurface = self.fractalsurface * ((self.fractalrange[1] - self.fractalrange[0]) / fractalrange) \
            + self.fractalrange[0] - ((self.fractalrange[1] - self.fractalrange[0]) / fractalrange) * fractalmin 
開發者ID:gprMax,項目名稱:gprMax,代碼行數:43,代碼來源:fractals.py

示例12: SO3_FFT_synthesize

# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftshift [as 別名]
def SO3_FFT_synthesize(f_hat):
    """
    Perform the inverse (spectral to spatial) SO(3) Fourier transform.

    :param f_hat: a list of matrices of with shapes [1x1, 3x3, 5x5, ..., 2 L_max + 1 x 2 L_max + 1]
    """
    F = wigner_d_transform_synthesis(f_hat)

    # The rest of the SO(3) FFT is just a standard torus FFT
    F = fftshift(F, axes=(0, 2))
    f = ifft2(F, axes=(0, 2))

    b = len(f_hat)
    return f * (2 * b) ** 2 
開發者ID:AMLab-Amsterdam,項目名稱:lie_learn,代碼行數:16,代碼來源:SO3FFT_Naive.py

示例13: correlation_2D

# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftshift [as 別名]
def correlation_2D(image):
    """
    #TODO document normalization output in units

    :param image: 2d image
    :return: 2d fourier transform
    """
    # Take the fourier transform of the image.
    F1 = fftpack.fft2(image)

    # Now shift the quadrants around so that low spatial frequencies are in
    # the center of the 2D fourier transformed image.
    F2 = fftpack.fftshift(F1)
    return np.abs(F2) 
開發者ID:sibirrer,項目名稱:lenstronomy,代碼行數:16,代碼來源:correlation.py

示例14: mfcc

# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftshift [as 別名]
def mfcc(s,fs, nfiltbank):
  
    #divide into segments of 25 ms with overlap of 10ms
    nSamples = np.int32(0.025*fs)
    overlap = np.int32(0.01*fs)
    nFrames = np.int32(np.ceil(len(s)/(nSamples-overlap)))
    #zero padding to make signal length long enough to have nFrames
    padding = ((nSamples-overlap)*nFrames) - len(s)
    if padding > 0:
        signal = np.append(s, np.zeros(padding))
    else:
        signal = s
    segment = np.empty((nSamples, nFrames))
    start = 0
    for i in range(nFrames):
        segment[:,i] = signal[start:start+nSamples]
        start = (nSamples-overlap)*i
    
    #compute periodogram
    nfft = 512
    periodogram = np.empty((nFrames, int(nfft/2 + 1)))
    for i in range(nFrames):
        x = segment[:,i] * hamming(nSamples)
        spectrum = fftshift(fft(x,nfft))
        periodogram[i,:] = abs(spectrum[int(nfft/2-1):])/nSamples
        
    #calculating mfccs    
    fbank = mel_filterbank(nfft, nfiltbank, fs)
    #nfiltbank MFCCs for each frame
    mel_coeff = np.empty((nfiltbank,nFrames))
    for i in range(nfiltbank):
        for k in range(nFrames):
            mel_coeff[i,k] = np.sum(periodogram[k,:]*fbank[:,i])
            
    mel_coeff = np.log10(mel_coeff)
    mel_coeff = dct(mel_coeff)
    #exclude 0th order coefficient (much larger than others)
    mel_coeff[0,:]= np.zeros(nFrames)
    return mel_coeff 
開發者ID:orchidas,項目名稱:Speaker-Recognition,代碼行數:41,代碼來源:mel_coefficients.py

示例15: two_point_correlation_fft

# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftshift [as 別名]
def two_point_correlation_fft(im):
    r"""
    Calculates the two-point correlation function using fourier transforms

    Parameters
    ----------
    im : ND-array
        The image of the void space on which the 2-point correlation is desired

    Returns
    -------
    result : named_tuple
        A tuple containing the x and y data for plotting the two-point
        correlation function, using the *args feature of matplotlib's plot
        function.  The x array is the distances between points and the y array
        is corresponding probabilities that points of a given distance both
        lie in the void space.

    Notes
    -----
    The fourier transform approach utilizes the fact that the autocorrelation
    function is the inverse FT of the power spectrum density.
    For background read the Scipy fftpack docs and for a good explanation see:
    http://www.ucl.ac.uk/~ucapikr/projects/KamilaSuankulova_BSc_Project.pdf
    """
    # Calculate half lengths of the image
    hls = (np.ceil(np.shape(im))/2).astype(int)
    # Fourier Transform and shift image
    F = sp_ft.ifftshift(sp_ft.fftn(sp_ft.fftshift(im)))
    # Compute Power Spectrum
    P = np.absolute(F**2)
    # Auto-correlation is inverse of Power Spectrum
    autoc = np.absolute(sp_ft.ifftshift(sp_ft.ifftn(sp_ft.fftshift(P))))
    tpcf = _radial_profile(autoc, r_max=np.min(hls))
    return tpcf 
開發者ID:PMEAL,項目名稱:porespy,代碼行數:37,代碼來源:__funcs__.py


注:本文中的scipy.fftpack.fftshift方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。