本文整理匯總了Python中scipy.fftpack.fftn方法的典型用法代碼示例。如果您正苦於以下問題:Python fftpack.fftn方法的具體用法?Python fftpack.fftn怎麽用?Python fftpack.fftn使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.fftpack
的用法示例。
在下文中一共展示了fftpack.fftn方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_size_accuracy
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftn [as 別名]
def test_size_accuracy(self):
for size in SMALL_COMPOSITE_SIZES + SMALL_PRIME_SIZES:
np.random.seed(1234)
x = np.random.rand(size, size) + 1j*np.random.rand(size, size)
y1 = fftn(x.real.astype(np.float32))
y2 = fftn(x.real.astype(np.float64)).astype(np.complex64)
self.assertTrue(y1.dtype == np.complex64)
assert_array_almost_equal_nulp(y1, y2, 2000)
for size in LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES:
np.random.seed(1234)
x = np.random.rand(size, 3) + 1j*np.random.rand(size, 3)
y1 = fftn(x.real.astype(np.float32))
y2 = fftn(x.real.astype(np.float64)).astype(np.complex64)
self.assertTrue(y1.dtype == np.complex64)
assert_array_almost_equal_nulp(y1, y2, 2000)
示例2: test_shape_axes_argument
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftn [as 別名]
def test_shape_axes_argument(self):
small_x = [[1,2,3],[4,5,6],[7,8,9]]
large_x1 = array([[1,2,3,0],
[4,5,6,0],
[7,8,9,0],
[0,0,0,0]])
# Disable tests with shape and axes of different lengths
# y = fftn(small_x,shape=(4,4),axes=(-1,))
# for i in range(4):
# assert_array_almost_equal (y[i],fft(large_x1[i]))
# y = fftn(small_x,shape=(4,4),axes=(-2,))
# for i in range(4):
# assert_array_almost_equal (y[:,i],fft(large_x1[:,i]))
y = fftn(small_x,shape=(4,4),axes=(-2,-1))
assert_array_almost_equal(y,fftn(large_x1))
y = fftn(small_x,shape=(4,4),axes=(-1,-2))
assert_array_almost_equal(y,swapaxes(
fftn(swapaxes(large_x1,-1,-2)),-1,-2))
示例3: test_size_accuracy
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftn [as 別名]
def test_size_accuracy(self):
for size in SMALL_COMPOSITE_SIZES + SMALL_PRIME_SIZES:
np.random.seed(1234)
x = np.random.rand(size, size) + 1j*np.random.rand(size, size)
y1 = fftn(x.real.astype(np.float32))
y2 = fftn(x.real.astype(np.float64)).astype(np.complex64)
assert_equal(y1.dtype, np.complex64)
assert_array_almost_equal_nulp(y1, y2, 2000)
for size in LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES:
np.random.seed(1234)
x = np.random.rand(size, 3) + 1j*np.random.rand(size, 3)
y1 = fftn(x.real.astype(np.float32))
y2 = fftn(x.real.astype(np.float64)).astype(np.complex64)
assert_equal(y1.dtype, np.complex64)
assert_array_almost_equal_nulp(y1, y2, 2000)
示例4: test_float16_input
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftn [as 別名]
def test_float16_input(self):
for size in SMALL_COMPOSITE_SIZES + SMALL_PRIME_SIZES:
np.random.seed(1234)
x = np.random.rand(size, size) + 1j*np.random.rand(size, size)
y1 = fftn(x.real.astype(np.float16))
y2 = fftn(x.real.astype(np.float64)).astype(np.complex64)
assert_equal(y1.dtype, np.complex64)
assert_array_almost_equal_nulp(y1, y2, 5e5)
for size in LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES:
np.random.seed(1234)
x = np.random.rand(size, 3) + 1j*np.random.rand(size, 3)
y1 = fftn(x.real.astype(np.float16))
y2 = fftn(x.real.astype(np.float64)).astype(np.complex64)
assert_equal(y1.dtype, np.complex64)
assert_array_almost_equal_nulp(y1, y2, 2e6)
示例5: get_numpy
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftn [as 別名]
def get_numpy(shape, fftn_shape=None, **kwargs):
import numpy.fft as numpy_fft
f = {
"fft2": numpy_fft.fft2,
"ifft2": numpy_fft.ifft2,
"rfft2": numpy_fft.rfft2,
"irfft2": lambda X: numpy_fft.irfft2(X, s=shape),
"fftshift": numpy_fft.fftshift,
"ifftshift": numpy_fft.ifftshift,
"fftfreq": numpy_fft.fftfreq,
}
if fftn_shape is not None:
f["fftn"] = numpy_fft.fftn
fft = SimpleNamespace(**f)
return fft
示例6: get_scipy
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftn [as 別名]
def get_scipy(shape, fftn_shape=None, **kwargs):
import numpy.fft as numpy_fft
import scipy.fftpack as scipy_fft
# use numpy implementation of rfft2/irfft2 because they have not been
# implemented in scipy.fftpack
f = {
"fft2": scipy_fft.fft2,
"ifft2": scipy_fft.ifft2,
"rfft2": numpy_fft.rfft2,
"irfft2": lambda X: numpy_fft.irfft2(X, s=shape),
"fftshift": scipy_fft.fftshift,
"ifftshift": scipy_fft.ifftshift,
"fftfreq": scipy_fft.fftfreq,
}
if fftn_shape is not None:
f["fftn"] = scipy_fft.fftn
fft = SimpleNamespace(**f)
return fft
示例7: vhartree_pbc
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftn [as 別名]
def vhartree_pbc(self, dens, **kw):
""" Compute Hartree potential for the density given in an equidistant grid """
from scipy.fftpack import fftn, ifftn
sh = self.mesh3d.shape
dens = dens.reshape(sh)
vh = fftn(dens)
umom = self.ucell_mom()
ii = [np.array([i-sh[j] if i>sh[j]//2 else i for i in range(sh[j])]) for j in range(3)]
gg = [np.array([umom[j]*i for i in ii[j]]) for j in range(3)]
vh = apply_inv_G2(vh, gg[0], gg[1], gg[2])
vh = ifftn(vh).real*(4*np.pi)
return vh
示例8: _rfftn
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftn [as 別名]
def _rfftn(a, s=None, axes=None):
return fft.fftn(a, shape = s, axes = axes);
示例9: _pad_nans
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftn [as 別名]
def _pad_nans(x, head=None, tail=None):
if np.ndim(x) == 1:
if head is None and tail is None:
return x
elif head and tail:
return np.r_[[np.nan] * head, x, [np.nan] * tail]
elif tail is None:
return np.r_[[np.nan] * head, x]
elif head is None:
return np.r_[x, [np.nan] * tail]
elif np.ndim(x) == 2:
if head is None and tail is None:
return x
elif head and tail:
return np.r_[[[np.nan] * x.shape[1]] * head, x,
[[np.nan] * x.shape[1]] * tail]
elif tail is None:
return np.r_[[[np.nan] * x.shape[1]] * head, x]
elif head is None:
return np.r_[x, [[np.nan] * x.shape[1]] * tail]
else:
raise ValueError("Nan-padding for ndim > 2 not implemented")
#original changes and examples in sandbox.tsa.try_var_convolve
# don't do these imports, here just for copied fftconvolve
#get rid of these imports
#from scipy.fftpack import fft, ifft, ifftshift, fft2, ifft2, fftn, \
# ifftn, fftfreq
#from numpy import product,array
示例10: bench_random
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftn [as 別名]
def bench_random(self):
from numpy.fft import fftn as numpy_fftn
print()
print(' Multi-dimensional Fast Fourier Transform')
print('===================================================')
print(' | real input | complex input ')
print('---------------------------------------------------')
print(' size | scipy | numpy | scipy | numpy ')
print('---------------------------------------------------')
for size,repeat in [((100,100),100),((1000,100),7),
((256,256),10),
((512,512),3),
]:
print('%9s' % ('%sx%s' % size), end=' ')
sys.stdout.flush()
for x in [random(size).astype(double),
random(size).astype(cdouble)+random(size).astype(cdouble)*1j
]:
y = fftn(x)
#if size > 500: y = fftn(x)
#else: y = direct_dft(x)
assert_array_almost_equal(fftn(x),y)
print('|%8.2f' % measure('fftn(x)',repeat), end=' ')
sys.stdout.flush()
assert_array_almost_equal(numpy_fftn(x),y)
print('|%8.2f' % measure('numpy_fftn(x)',repeat), end=' ')
sys.stdout.flush()
print(' (secs for %s calls)' % (repeat))
sys.stdout.flush()
示例11: test_regression_244
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftn [as 別名]
def test_regression_244(self):
"""fft returns wrong result with axes parameter."""
# fftn (and hence fft2) used to break when both axes and shape were
# used
x = numpy.ones((4,4,2))
y = fft2(x, shape=(8,8), axes=(-3,-2))
y_r = numpy.fft.fftn(x, s=(8, 8), axes=(-3, -2))
assert_array_almost_equal(y, y_r)
示例12: test_definition
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftn [as 別名]
def test_definition(self):
x = [[1,2,3],[4,5,6],[7,8,9]]
y = fftn(np.array(x, np.float32))
if not y.dtype == np.complex64:
raise ValueError("double precision output with single precision")
y_r = np.array(fftn(x), np.complex64)
assert_array_almost_equal_nulp(y, y_r)
示例13: test_shape_axes_argument2
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftn [as 別名]
def test_shape_axes_argument2(self):
# Change shape of the last axis
x = numpy.random.random((10, 5, 3, 7))
y = fftn(x, axes=(-1,), shape=(8,))
assert_array_almost_equal(y, fft(x, axis=-1, n=8))
# Change shape of an arbitrary axis which is not the last one
x = numpy.random.random((10, 5, 3, 7))
y = fftn(x, axes=(-2,), shape=(8,))
assert_array_almost_equal(y, fft(x, axis=-2, n=8))
# Change shape of axes: cf #244, where shape and axes were mixed up
x = numpy.random.random((4,4,2))
y = fftn(x, axes=(-3,-2), shape=(8,8))
assert_array_almost_equal(y, numpy.fft.fftn(x, axes=(-3, -2), s=(8, 8)))
示例14: test_shape_argument_more
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftn [as 別名]
def test_shape_argument_more(self):
"""Test that fftn raises ValueError when s.shape is longer than x.shape"""
x = zeros((4, 4, 2))
assert_raises(ValueError, fftn, x, shape=(8, 8, 2, 1))
示例15: test_random_complex
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import fftn [as 別名]
def test_random_complex(self):
for size in [1,2,51,32,64,92]:
x = random([size,size]) + 1j*random([size,size])
assert_array_almost_equal_nulp(ifftn(fftn(x)),x,self.maxnlp)
assert_array_almost_equal_nulp(fftn(ifftn(x)),x,self.maxnlp)