本文整理匯總了Python中scipy.fftpack.dct方法的典型用法代碼示例。如果您正苦於以下問題:Python fftpack.dct方法的具體用法?Python fftpack.dct怎麽用?Python fftpack.dct使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.fftpack
的用法示例。
在下文中一共展示了fftpack.dct方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: amplitudes_at_frequencies
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import dct [as 別名]
def amplitudes_at_frequencies(freqInds, timeseries, times=None, transform='dct'):
"""
Finds the amplitudes in the data at the specified frequency indices.
Todo: better docstring. Currently only works for the DCT.
"""
amplitudes = {}
for o in timeseries.keys():
if transform == 'dct':
temp = _dct(timeseries[o], norm='ortho')[freqInds] / _np.sqrt(len(timeseries[o]) / 2)
if 0. in freqInds:
temp[0] = temp[0] / _np.sqrt(2)
amplitudes[o] = list(temp)
else:
raise NotImplementedError("This function only currently works for the DCT!")
return amplitudes
示例2: block_dct
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import dct [as 別名]
def block_dct(x, block_size=8, masked=False, ratio=0.5):
z = torch.zeros(x.size())
num_blocks = int(x.size(2) / block_size)
mask = np.zeros((x.size(0), x.size(1), block_size, block_size))
mask[:, :, :int(block_size * ratio), :int(block_size * ratio)] = 1
for i in range(num_blocks):
for j in range(num_blocks):
submat = x[:, :, (i * block_size):((i + 1) * block_size), (j * block_size):((j + 1) * block_size)].numpy()
submat_dct = dct(dct(submat, axis=2, norm='ortho'), axis=3, norm='ortho')
if masked:
submat_dct = submat_dct * mask
submat_dct = torch.from_numpy(submat_dct)
z[:, :, (i * block_size):((i + 1) * block_size), (j * block_size):((j + 1) * block_size)] = submat_dct
return z
# applies IDCT to each block of size block_size
示例3: run_fft_dct_example
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import dct [as 別名]
def run_fft_dct_example():
random_state = np.random.RandomState(1999)
fs, d = fetch_sample_speech_fruit()
n_fft = 64
X = d[0]
X_stft = stft(X, n_fft)
X_rr = complex_to_real_view(X_stft)
X_dct = fftpack.dct(X_rr, axis=-1, norm='ortho')
X_dct_sub = X_dct[1:] - X_dct[:-1]
std = X_dct_sub.std(axis=0, keepdims=True)
X_dct_sub += .01 * std * random_state.randn(
X_dct_sub.shape[0], X_dct_sub.shape[1])
X_dct_unsub = np.cumsum(X_dct_sub, axis=0)
X_idct = fftpack.idct(X_dct_unsub, axis=-1, norm='ortho')
X_irr = real_to_complex_view(X_idct)
X_r = istft(X_irr, n_fft)[:len(X)]
SNR = 20 * np.log10(np.linalg.norm(X - X_r) / np.linalg.norm(X))
print(SNR)
wavfile.write("fftdct_orig.wav", fs, soundsc(X))
wavfile.write("fftdct_rec.wav", fs, soundsc(X_r))
示例4: plot
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import dct [as 別名]
def plot(self, ax=None, **kwargs):
warnings.warn("Plotting the gammas and x_rotation_angles through DCT "
"and DST. If you are interested in v, u_singles and "
"u_pairs you can access them via params.v, "
"params.u_singles, params.u_pairs")
if ax is None:
fig, ax = plt.subplots()
ax.plot(dct(self.v, n=self.n_steps),
label="betas", marker="s", ls="", **kwargs)
if not _is_iterable_empty(self.u_singles):
ax.plot(dst(self.u_singles, n=self.n_steps),
label="gammas_singles", marker="^", ls="", **kwargs)
if not _is_iterable_empty(self.u_pairs):
ax.plot(dst(self.u_pairs, n=self.n_steps),
label="gammas_pairs", marker="v", ls="", **kwargs)
ax.set_xlabel("timestep")
ax.legend()
示例5: fourier_extended_to_extended
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import dct [as 別名]
def fourier_extended_to_extended(
params: FourierExtendedParams) -> ExtendedParams:
out = deepcopy(params)
out.__class__ = ExtendedParams
out.betas = dct(params.v, n=out.n_steps, axis=0)
out.gammas_singles = dst(params.u_singles, n=out.n_steps, axis=0)
out.gammas_pairs = dst(params.u_pairs, n=out.n_steps, axis=0)
# and clean up
del out.__u_singles
del out.__u_pairs
del out.__v
del out.q
return out
# #############################################################################
# And now all the possible compositions as well:
# Todo: Create this code automatically by traversing the tree?
# #############################################################################
示例6: mfcc
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import dct [as 別名]
def mfcc(signal,samplerate=16000,winlen=0.025,winstep=0.01,numcep=13,
nfilt=26,nfft=512,lowfreq=0,highfreq=None,preemph=0.97,ceplifter=22,appendEnergy=True):
"""Compute MFCC features from an audio signal.
:param signal: the audio signal from which to compute features. Should be an N*1 array
:param samplerate: the samplerate of the signal we are working with.
:param winlen: the length of the analysis window in seconds. Default is 0.025s (25 milliseconds)
:param winstep: the step between successive windows in seconds. Default is 0.01s (10 milliseconds)
:param numcep: the number of cepstrum to return, default 13
:param nfilt: the number of filters in the filterbank, default 26.
:param nfft: the FFT size. Default is 512.
:param lowfreq: lowest band edge of mel filters. In Hz, default is 0.
:param highfreq: highest band edge of mel filters. In Hz, default is samplerate/2
:param preemph: apply preemphasis filter with preemph as coefficient. 0 is no filter. Default is 0.97.
:param ceplifter: apply a lifter to final cepstral coefficients. 0 is no lifter. Default is 22.
:param appendEnergy: if this is true, the zeroth cepstral coefficient is replaced with the log of the total frame energy.
:returns: A numpy array of size (NUMFRAMES by numcep) containing features. Each row holds 1 feature vector.
"""
feat,energy = fbank(signal,samplerate,winlen,winstep,nfilt,nfft,lowfreq,highfreq,preemph)
feat = numpy.log(feat)
feat = dct(feat, type=2, axis=1, norm='ortho')[:,:numcep]
feat = lifter(feat,ceplifter)
if appendEnergy: feat[:,0] = numpy.log(energy) # replace first cepstral coefficient with log of frame energy
return feat
示例7: mfccVTLP
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import dct [as 別名]
def mfccVTLP(signal,samplerate=16000,winlen=0.025,winstep=0.01,numcep=13,
nfilt=26,nfft=512,lowfreq=0,highfreq=None,preemph=0.97,ceplifter=22,appendEnergy=True, alpha=1.0):
"""Compute MFCC features from an audio signal.
:param signal: the audio signal from which to compute features. Should be an N*1 array
:param samplerate: the samplerate of the signal we are working with.
:param winlen: the length of the analysis window in seconds. Default is 0.025s (25 milliseconds)
:param winstep: the step between successive windows in seconds. Default is 0.01s (10 milliseconds)
:param numcep: the number of cepstrum to return, default 13
:param nfilt: the number of filters in the filterbank, default 26.
:param nfft: the FFT size. Default is 512.
:param lowfreq: lowest band edge of mel filters. In Hz, default is 0.
:param highfreq: highest band edge of mel filters. In Hz, default is samplerate/2
:param preemph: apply preemphasis filter with preemph as coefficient. 0 is no filter. Default is 0.97.
:param ceplifter: apply a lifter to final cepstral coefficients. 0 is no lifter. Default is 22.
:param appendEnergy: if this is true, the zeroth cepstral coefficient is replaced with the log of the total frame energy.
:returns: A numpy array of size (NUMFRAMES by numcep) containing features. Each row holds 1 feature vector.
"""
feat,energy = fbankVTLP(signal,samplerate,winlen,winstep,nfilt,nfft,lowfreq,highfreq,preemph,False,alpha)
feat = numpy.log(feat)
feat = dct(feat, type=2, axis=1, norm='ortho')[:,:numcep]
feat = lifter(feat,ceplifter)
if appendEnergy: feat[:,0] = numpy.log(energy) # replace first cepstral coefficient with log of frame energy
return feat
示例8: DCT4
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import dct [as 別名]
def DCT4(samples):
"""
Method to create DCT4 transformation using DCT3
Arguments :
samples : (1D Array) Input samples to be transformed
Returns :
y : (1D Array) Transformed output samples
"""
# Initialize
samplesup=np.zeros(2*N, dtype = np.float32)
# Upsample signal:
samplesup[1::2]=samples
y=spfft.dct(samplesup,type=3,norm='ortho')*np.sqrt(2)#/2
return y[0:N]
#The DST4 transform:
示例9: main
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import dct [as 別名]
def main():
## Settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--input-scp')
parser.add_argument('--output-scp')
parser.add_argument('--output-ark')
parser.add_argument('--dct-dim', type=int)
args = parser.parse_args()
ark_scp_output='ark:| copy-feats --compress=true ark:- ark,scp:' + args.output_ark + ',' + args.output_scp
with ko.open_or_fd(ark_scp_output,'wb') as f:
for key, mat in ko.read_mat_scp(args.input_scp):
dct_mat = fft.dct(mat, type=2, n=args.dct_dim)
ko.write_mat(f, dct_mat, key=key)
print('#################success#################')
示例10: forward_dct
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import dct [as 別名]
def forward_dct(args, cpc_model, device, data_loader, output_ark, output_scp, dct_dim=24):
''' forward with dct '''
logger.info("Starting Forward Passing")
cpc_model.eval() # not training cdc model
ark_scp_output='ark:| copy-feats --compress=true ark:- ark,scp:' + output_ark + ',' + output_scp
with torch.no_grad():
with ko.open_or_fd(ark_scp_output,'wb') as f:
for [utt_id, data] in data_loader:
data = data.float().unsqueeze(1).to(device) # add channel dimension
data = data.contiguous()
hidden = cpc_model.init_hidden(len(data))
output, hidden = cpc_model.predict(data, hidden)
mat = output.squeeze(0).cpu().numpy() # kaldi io does not accept torch tensor
dct_mat = fft.dct(mat, type=2, n=dct_dim) # apply dct
ko.write_mat(f, dct_mat, key=utt_id[0])
示例11: dctii
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import dct [as 別名]
def dctii(x, axes=None):
"""
Compute a multi-dimensional DCT-II over specified array axes. This
function is implemented by calling the one-dimensional DCT-II
:func:`scipy.fftpack.dct` with normalization mode 'ortho' for each
of the specified axes.
Parameters
----------
a : array_like
Input array
axes : sequence of ints, optional (default None)
Axes over which to compute the DCT-II.
Returns
-------
y : ndarray
DCT-II of input array
"""
if axes is None:
axes = list(range(x.ndim))
for ax in axes:
x = fftpack.dct(x, type=2, axis=ax, norm='ortho')
return x
示例12: run_fft_dct_example
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import dct [as 別名]
def run_fft_dct_example():
random_state = np.random.RandomState(1999)
fs, d = fetch_sample_speech_fruit()
n_fft = 64
X = d[0]
X_stft = stft(X, fftsize=n_fft)
X_rr = complex_to_real_view(X_stft)
X_dct = fftpack.dct(X_rr, axis=-1, norm='ortho')
X_dct_sub = X_dct[1:] - X_dct[:-1]
std = X_dct_sub.std(axis=0, keepdims=True)
X_dct_sub += .01 * std * random_state.randn(
X_dct_sub.shape[0], X_dct_sub.shape[1])
X_dct_unsub = np.cumsum(X_dct_sub, axis=0)
X_idct = fftpack.idct(X_dct_unsub, axis=-1, norm='ortho')
X_irr = real_to_complex_view(X_idct)
X_r = istft(X_irr, n_fft)[:len(X)]
SNR = 20 * np.log10(np.linalg.norm(X - X_r) / np.linalg.norm(X))
print(SNR)
wavfile.write("fftdct_orig.wav", fs, soundsc(X))
wavfile.write("fftdct_rec.wav", fs, soundsc(X_r))
示例13: dct
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import dct [as 別名]
def dct(x, null_hypothesis=None, counts=1):
"""
Returns the Type-II discrete cosine transform of y, with an orthogonal normalization, where
y = (x - counts * null_hypothesis) / sqrt(counts * null_hypothesis * (1-null_hypothesis)),
where the arithmetic is element-wise, and `null_hypothesis` is a vector in (0,1).
If `null_hypothesis` is None it is set to the mean of x. If that mean is 0 or 1 then
the vector of all ones, except for the first element which is set to zero, is returned.
Parameters
----------
x : array
Data string, on which the normalization and discrete cosine transformation is performed. If
counts is not specified, this must be a bit string.
null_hypothesis : array, optional
If not None, an array to use in the normalization before the dct. If None, it is
taken to be an array in which every element is the mean of x.
counts : int, optional
A factor in the normalization, that should correspond to the counts-per-timestep (so
for full time resolution this is 1).
Returns
-------
array
The DCT modes described above.
"""
standardized_x = standardizer(x, null_hypothesis, counts)
if standardized_x is None:
out = _np.ones(len(x))
out[0] = 0.
return out
modes = _dct(standardized_x, norm='ortho')
return modes
示例14: lowpass_filter
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import dct [as 別名]
def lowpass_filter(data, max_freq=None):
"""
Implements a low-pass filter on the input array, by DCTing the input, mapping all but the lowest
`max_freq` modes to zero, and then inverting the transform.
Parameters
----------
data : numpy.array,
The vector to low-pass filter
max_freq : None or int, optional
The highest frequency to keep. If None then it keeps the minimum of 50 or l/10 frequencies, where l is the
length of the data vector
Returns
-------
numpy.array
The low-pass-filtered data.
"""
n = len(data)
if max_freq is None:
max_freq = min(int(_np.ceil(n / 10)), 50)
modes = _dct(data, norm='ortho')
if max_freq < n - 1:
modes[max_freq + 1:] = _np.zeros(len(data) - max_freq - 1)
out = _idct(modes, norm='ortho')
return out
示例15: mfcc_spec
# 需要導入模塊: from scipy import fftpack [as 別名]
# 或者: from scipy.fftpack import dct [as 別名]
def mfcc_spec(audio, sample_rate, window_stride=(160, 80),
fft_size=512, num_filt=20, num_coeffs=13, return_parts=False):
"""Calculates mel frequency cepstrum coefficient spectrogram"""
powers = power_spec(audio, window_stride, fft_size)
if powers.size == 0:
return np.empty((0, min(num_filt, num_coeffs)))
filters = filterbanks(sample_rate, num_filt, powers.shape[1])
mels = safe_log(np.dot(powers, filters.T)) # Mel energies (condensed spectrogram)
mfccs = dct(mels, norm='ortho')[:, :num_coeffs] # machine readable spectrogram
mfccs[:, 0] = safe_log(np.sum(powers, 1)) # Replace first band with log energies
if return_parts:
return powers, filters, mels, mfccs
else:
return mfccs