本文整理匯總了Python中scipy.cluster.vq.vq方法的典型用法代碼示例。如果您正苦於以下問題:Python vq.vq方法的具體用法?Python vq.vq怎麽用?Python vq.vq使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.cluster.vq
的用法示例。
在下文中一共展示了vq.vq方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: Kmeans
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import vq [as 別名]
def Kmeans(file, vocabfile, k):
np.random.seed((1000,2000))
whitened = whiten(embeddings)
codebook, distortion = kmeans(whitened, k)
clusters = [l2_nearest(embeddings, c, representatives+1) for c in codebook]
# output
print(len(codebook), distortion)
for centroid in codebook:
print(' '.join([str(x) for x in centroid]))
print()
for cluster in clusters:
print(' '.join([id_word[i] for i, d in cluster]).encode('utf-8'))
print()
# assign clusters to words
codes, _ = vq(embeddings, codebook)
for w, c in zip(word_id.keys(), codes):
print(w, c)
示例2: test_vq
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import vq [as 別名]
def test_vq(self):
initc = np.concatenate(([[X[0]], [X[1]], [X[2]]]))
if TESTC:
label1, dist = _vq.vq(X, initc)
assert_array_equal(label1, LABEL1)
tlabel1, tdist = vq(X, initc)
else:
print("== not testing C imp of vq ==")
#def test_py_vq_1d(self):
# """Test special rank 1 vq algo, python implementation."""
# data = X[:, 0]
# initc = data[:3]
# a, b = _py_vq_1d(data, initc)
# ta, tb = py_vq(data[:, np.newaxis], initc[:, np.newaxis])
# assert_array_equal(a, ta)
# assert_array_equal(b, tb)
示例3: python_vq
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import vq [as 別名]
def python_vq(all_data,code_book):
import time
t1 = time.time()
codes1,dist1 = vq.vq(all_data,code_book)
t2 = time.time()
#print 'fast (double):', t2 - t1
#print ' first codes:', codes1[:5]
#print ' first dist:', dist1[:5]
#print ' last codes:', codes1[-5:]
#print ' last dist:', dist1[-5:]
float_obs = all_data.astype(np.float32)
float_code = code_book.astype(np.float32)
t1 = time.time()
codes1,dist1 = vq.vq(float_obs,float_code)
t2 = time.time()
#print 'fast (float):', t2 - t1
#print ' first codes:', codes1[:5]
#print ' first dist:', dist1[:5]
#print ' last codes:', codes1[-5:]
#print ' last dist:', dist1[-5:]
return codes1,dist1
示例4: cluster_lon_lats
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import vq [as 別名]
def cluster_lon_lats(self):
"""Clusters the list of lon_lats into groups """
np_lon_lats = []
for lon_lat in self.lon_lats:
dpoint = np.fromiter(lon_lat, np.dtype('float'))
np_lon_lats.append(dpoint)
data = array(np_lon_lats)
centroids, _ = kmeans(data, self.number_clusters)
idx, _ = vq(data, centroids)
self.idx = idx
self.data = data
self.centroids = centroids
# Sort the centroids by lon, then lat
sc = centroids[centroids[:,1].argsort()]
sc = sc[sc[:,0].argsort()]
self.sorted_centroids = sc.tolist()
示例5: encode
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import vq [as 別名]
def encode(self, vecs):
"""Encode input vectors into PQ-codes.
Args:
vecs (np.ndarray): Input vectors with shape=(N, D) and dtype=np.float32.
Returns:
np.ndarray: PQ codes with shape=(N, M) and dtype=self.code_dtype
"""
assert vecs.dtype == np.float32
assert vecs.ndim == 2
N, D = vecs.shape
assert D == self.Ds * self.M, "input dimension must be Ds * M"
# codes[n][m] : code of n-th vec, m-th subspace
codes = np.empty((N, self.M), dtype=self.code_dtype)
for m in range(self.M):
if self.verbose:
print("Encoding the subspace: {} / {}".format(m, self.M))
vecs_sub = vecs[:, m * self.Ds : (m+1) * self.Ds]
codes[:, m], _ = vq(vecs_sub, self.codewords[m])
return codes
示例6: apply_palette
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import vq [as 別名]
def apply_palette(img, palette, options):
'''Apply the pallete to the given image. The first step is to set all
background pixels to the background color; then, nearest-neighbor
matching is used to map each foreground color to the closest one in
the palette.
'''
if not options.quiet:
print(' applying palette...')
bg_color = palette[0]
fg_mask = get_fg_mask(bg_color, img, options)
orig_shape = img.shape
pixels = img.reshape((-1, 3))
fg_mask = fg_mask.flatten()
num_pixels = pixels.shape[0]
labels = np.zeros(num_pixels, dtype=np.uint8)
labels[fg_mask], _ = vq(pixels[fg_mask], palette)
return labels.reshape(orig_shape[:-1])
######################################################################
示例7: test_vq_1d
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import vq [as 別名]
def test_vq_1d(self):
"""Test special rank 1 vq algo, python implementation."""
data = X[:, 0]
initc = data[:3]
if TESTC:
a, b = _vq.vq(data, initc)
ta, tb = py_vq(data[:, np.newaxis], initc[:, np.newaxis])
assert_array_equal(a, ta)
assert_array_equal(b, tb)
else:
print("== not testing C imp of vq (rank 1) ==")
示例8: test__vq_sametype
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import vq [as 別名]
def test__vq_sametype(self):
if TESTC:
a = np.array([1, 2])
b = a.astype(float)
assert_raises(ValueError, _vq.vq, a, b)
示例9: run_kmeans
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import vq [as 別名]
def run_kmeans(self, X, K):
"""Runs k-means and returns the labels assigned to the data."""
wX = vq.whiten(X)
means, dist = vq.kmeans(wX, K, iter=100)
labels, dist = vq.vq(wX, means)
return means, labels
示例10: compute_bic
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import vq [as 別名]
def compute_bic(self, D, means, labels, K, R):
"""Computes the Bayesian Information Criterion."""
D = vq.whiten(D)
Rn = D.shape[0]
M = D.shape[1]
if R == K:
return 1
# Maximum likelihood estimate (MLE)
mle_var = 0
for k in range(len(means)):
X = D[np.argwhere(labels == k)]
X = X.reshape((X.shape[0], X.shape[-1]))
for x in X:
mle_var += distance.euclidean(x, means[k])
#print x, means[k], mle_var
mle_var /= float(R - K)
# Log-likelihood of the data
l_D = - Rn/2. * np.log(2*np.pi) - (Rn * M)/2. * np.log(mle_var) - \
(Rn - K) / 2. + Rn * np.log(Rn) - Rn * np.log(R)
# Params of BIC
p = (K-1) + M * K + mle_var
#print "BIC:", l_D, p, R, K
# Return the bic
return l_D - p / 2. * np.log(R)
示例11: test_kmeans
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import vq [as 別名]
def test_kmeans(K=5):
"""Test k-means with the synthetic data."""
X = XMeans.generate_2d_data(K=4)
wX = vq.whiten(X)
dic, dist = vq.kmeans(wX, K, iter=100)
plt.scatter(wX[:, 0], wX[:, 1])
plt.scatter(dic[:, 0], dic[:, 1], color="m")
plt.show()
示例12: quantize
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import vq [as 別名]
def quantize(self):
clusters = range(self.centroids.shape[0] + 1)
histograms = {}
for fname in sorted(self.data.keys()):
if self.data[fname] is None: continue
idx,_ = vq(self.data[fname], self.centroids)
histograms[fname], _ = np.histogram(idx, bins=clusters, normed=self.normalize)
return histograms
示例13: sequences
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import vq [as 別名]
def sequences(self):
sequences = {}
for fname in sorted(self.data.keys()):
if self.data[fname] is None: continue
idx,_ = vq(self.data[fname], self.centroids)
sequences[fname] = idx
return sequences
示例14: make_bow
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import vq [as 別名]
def make_bow(dataset, clusters, tfidf):
print("Make bow vector for each frame")
n_videos = len(dataset)
bow = np.zeros((n_videos, clusters.shape[0]), dtype=np.float)
# Make bow vectors for all videos.
video_index = 0
for video in dataset:
visual_word_ids = vq(video["features"], clusters)[0]
for word_id in visual_word_ids:
bow[video_index, word_id] += 1
video_index += 1
# Check whether to use TF-IDF weighting.
if tfidf:
print("Applying TF-IDF weighting")
freq = np.sum((bow > 0) * 1, axis = 0)
idf = np.log((n_videos + 1) / (freq + 1))
bow = bow * idf
# Replace features in dataset with the bow vector we've computed.
video_index = 0
for i in range(len(dataset)):
dataset[i]["features"] = bow[video_index]
video_index += 1
if (i + 1) % 50 == 0:
print("Processed %d/%d videos" % (i + 1, len(dataset)))
return dataset
示例15: make_bow
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import vq [as 別名]
def make_bow(dataset, clusters, tfidf):
print("Make bow vector for each frame")
# Count total number of frames.
n_frames = 0
for video in dataset:
n_frames += len(video["features"])
# Init bow vectors for all frames.
bow = np.zeros((n_frames, clusters.shape[0]), dtype=np.float)
# Make bow vectors for all frames.
frame_index = 0
for video in dataset:
for frame in video["features"]:
visual_word_ids = vq(frame, clusters)[0]
for word_id in visual_word_ids:
bow[frame_index, word_id] += 1
frame_index += 1
# Check whether to use TF-IDF weighting.
if tfidf:
print("Applying TF-IDF weighting")
freq = np.sum((bow > 0) * 1, axis = 0)
idf = np.log((n_frames + 1) / (freq + 1))
bow = bow * idf
# Replace features in dataset with the bow vector we've computed.
frame_index = 0
for i in range(len(dataset)):
features = []
for frame in dataset[i]["features"]:
features.append(bow[frame_index])
frame_index += 1
dataset[i]["features"] = features
if (i + 1) % 50 == 0:
print("Processed %d/%d videos" % (i + 1, len(dataset)))
return dataset