本文整理匯總了Python中scipy.cluster.vq.kmeans2方法的典型用法代碼示例。如果您正苦於以下問題:Python vq.kmeans2方法的具體用法?Python vq.kmeans2怎麽用?Python vq.kmeans2使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.cluster.vq
的用法示例。
在下文中一共展示了vq.kmeans2方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: determine_samples
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def determine_samples(threshold_density, cluster_cut, n_neighbors):
if isinstance(threshold_density, type(None)):
return 2
if isinstance(threshold_density, (float, int)):
min_samples = threshold_density * 4. / 3. * np.pi * cluster_cut**3
elif (threshold_density == 'auto'):
modes = 2
centroid, _ = vq.kmeans2(
n_neighbors * 1.0, modes, iter=10, check_finite=False)
min_samples = np.max(centroid)
else:
raise ValueError("Wrong value of 'threshold_density' passed\
to do_cluster_analysis_DBSCAN() ")
return np.max([min_samples, 2])
示例2: test_kmeans_lost_cluster
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def test_kmeans_lost_cluster(self):
"""This will cause kmean to have a cluster with no points."""
data = np.fromfile(DATAFILE1, sep=", ")
data = data.reshape((200, 2))
initk = np.array([[-1.8127404, -0.67128041],
[2.04621601, 0.07401111],
[-2.31149087,-0.05160469]])
res = kmeans(data, initk)
warn_ctx = WarningManager()
warn_ctx.__enter__()
try:
warnings.simplefilter('ignore', UserWarning)
res = kmeans2(data, initk, missing='warn')
finally:
warn_ctx.__exit__()
assert_raises(ClusterError, kmeans2, data, initk, missing='raise')
示例3: test_kmeans2_init
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def test_kmeans2_init(self):
"""Testing that kmeans2 init methods work."""
data = np.fromfile(DATAFILE1, sep=", ")
data = data.reshape((200, 2))
kmeans2(data, 3, minit='points')
kmeans2(data[:, :1], 3, minit='points') # special case (1-D)
# minit='random' can give warnings, filter those
warn_ctx = WarningManager()
warn_ctx.__enter__()
try:
warnings.filterwarnings('ignore',
message="One of the clusters is empty. Re-run")
kmeans2(data, 3, minit='random')
kmeans2(data[:, :1], 3, minit='random') # special case (1-D)
finally:
warn_ctx.__exit__()
示例4: findClusters_kmeans
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def findClusters_kmeans(data):
'''
Cluster data using k-means
'''
# whiten the observations
data_w = vq.whiten(data)
# create the classifier object
kmeans, labels = vq.kmeans2(
data_w,
k=4,
iter=30
)
# fit the data
return kmeans, labels
# the file name of the dataset
示例5: kmeans
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def kmeans(vs, ks, niter):
centers, labels = vq.kmeans2(vs, ks, niter)
return centers
# finding nearest neighbor
示例6: test_kmeans2_simple
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def test_kmeans2_simple(self):
"""Testing simple call to kmeans2 and its results."""
initc = np.concatenate(([[X[0]], [X[1]], [X[2]]]))
code = initc.copy()
code1 = kmeans2(X, code, iter=1)[0]
code2 = kmeans2(X, code, iter=2)[0]
assert_array_almost_equal(code1, CODET1)
assert_array_almost_equal(code2, CODET2)
示例7: test_kmeans2_rank1
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def test_kmeans2_rank1(self):
"""Testing simple call to kmeans2 with rank 1 data."""
data = np.fromfile(DATAFILE1, sep=", ")
data = data.reshape((200, 2))
data1 = data[:, 0]
data2 = data[:, 1]
initc = data1[:3]
code = initc.copy()
code1 = kmeans2(data1, code, iter=1)[0]
code2 = kmeans2(data1, code, iter=2)[0]
示例8: test_kmeans2_rank1_2
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def test_kmeans2_rank1_2(self):
"""Testing simple call to kmeans2 with rank 1 data."""
data = np.fromfile(DATAFILE1, sep=", ")
data = data.reshape((200, 2))
data1 = data[:, 0]
code1 = kmeans2(data1, 2, iter=1)
示例9: test_kmeans_0k
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def test_kmeans_0k(self):
"""Regression test for #546: fail when k arg is 0."""
assert_raises(ValueError, kmeans, X, 0)
assert_raises(ValueError, kmeans2, X, 0)
assert_raises(ValueError, kmeans2, X, np.array([]))
示例10: cluster_zixi
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def cluster_zixi(kpts, cat_num):
# kpts: center-normalized (N, 17, 3)
datas = np.array(kpts)
inds = np.where(datas[:, :, 2] == 0)
datas[inds[0], inds[1], 0:2] = 0.5
datas = datas.reshape(len(datas), -1)
res = vq.kmeans2(datas, cat_num, minit='points', iter=100)
return res
示例11: kmeans
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def kmeans(xs, k):
assert xs.ndim == 2
try:
from sklearn.cluster import k_means
_, labels, _ = k_means(xs.astype('float64'), k)
except ImportError:
from scipy.cluster.vq import kmeans2
_, labels = kmeans2(xs, k, missing='raise')
return labels
示例12: setup_model_and_opt
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def setup_model_and_opt(self):
n_class = len(np.unique(self.all_y))
x_tr = self.all_x[self.tr_mask]; y_tr = self.all_y[self.tr_mask]; n_inducing_points = len(x_tr)
k = SparseGraphPolynomial(self.adj_mat, self.node_features, x_tr, degree=1.)
k.offset = 0.; k.offset.fixed = True; k.variance = 1.; k.variance.fixed = True
ind_points = kmeans2(self.node_features, n_inducing_points, minit='points')[0]
opt = tf.train.AdamOptimizer(0.005)
m = GraphSVGP(x_tr, y_tr, k, GPflow.likelihoods.MultiClass(n_class), ind_points,
num_latent=n_class, minibatch_size=len(x_tr), whiten=True, q_diag=False)
return m, opt
示例13: __init__
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def __init__(self, data_name, random_seed):
self.data_name = data_name.lower()
self.random_seed = int(random_seed); np.random.seed(self.random_seed); tf.set_random_seed(self.random_seed)
# Load data
self.adj_mat, self.node_features, self.x_tr, self.y_tr, self.x_val, self.y_val, self.x_test, self.y_test \
= load_data_ssl(self.data_name)
# Init kernel
k = SparseGraphPolynomial(self.adj_mat, self.node_features, self.x_tr, degree=3.)
k.offset = np.abs(np.random.randn(1) + 5.); k.offset.fixed = False
k.variance = 1.; k.variance.fixed = True
# Init inducing points
ind_points = kmeans2(self.node_features, len(self.x_tr), minit='points')[0]
# Init optimizer
self.optimizer = tf.train.AdamOptimizer(0.0005)
# Init model
self.m = GraphSVGP(self.x_tr, self.y_tr, k, GPflow.likelihoods.MultiClass(len(np.unique(self.y_tr))), ind_points,
num_latent=len(np.unique(self.y_tr)), minibatch_size=len(self.x_tr), whiten=True, q_diag=False)
# Define housekeeping variables
self.last_ts = time.time()
self.iter = 0; self.check_obj_every = 200
self.log_iter = []; self.log_t = []; self.log_obj = []; self.log_param = None; self.log_opt_state = None;
self.param_fp = os.path.join(os.getenv('PWD'), 'ssl_param_files')
if not (os.path.isdir(self.param_fp)):
os.mkdir(self.param_fp)
self.param_fp = os.path.join(self.param_fp, 'SSL-{0}-rs_{1}.p'.format(self.data_name, random_seed))
self.m._compile(self.optimizer)
if os.path.isfile(self.param_fp):
print 'Param. file already exists! Loading from {0}.'.format(self.param_fp)
self.load_snapshot(self.param_fp)
else:
self.save_snapshot(self.param_fp, update_before_saving=True)
示例14: fit
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def fit(self, vecs, iter=20, seed=123):
"""Given training vectors, run k-means for each sub-space and create
codewords for each sub-space.
This function should be run once first of all.
Args:
vecs (np.ndarray): Training vectors with shape=(N, D) and dtype=np.float32.
iter (int): The number of iteration for k-means
seed (int): The seed for random process
Returns:
object: self
"""
assert vecs.dtype == np.float32
assert vecs.ndim == 2
N, D = vecs.shape
assert self.Ks < N, "the number of training vector should be more than Ks"
assert D % self.M == 0, "input dimension must be dividable by M"
self.Ds = int(D / self.M)
np.random.seed(seed)
if self.verbose:
print("iter: {}, seed: {}".format(iter, seed))
# [m][ks][ds]: m-th subspace, ks-the codeword, ds-th dim
self.codewords = np.zeros((self.M, self.Ks, self.Ds), dtype=np.float32)
for m in range(self.M):
if self.verbose:
print("Training the subspace: {} / {}".format(m, self.M))
vecs_sub = vecs[:, m * self.Ds : (m+1) * self.Ds]
self.codewords[m], _ = kmeans2(vecs_sub, self.Ks, iter=iter, minit='points')
return self
示例15: initFromKMeans
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def initFromKMeans(gmm, data, covar=None, rng=np.random):
"""Initialization callback from a k-means clustering run.
See Algorithm 1 from Bloemer & Bujna (arXiv:1312.5946)
NOTE: The result of this call are not deterministic even if rng is set
because scipy.cluster.vq.kmeans2 uses its own initialization.
Args:
gmm: A GMM to be initialized
data: numpy array (N,D) to define the range of the component means
covar: ignored in this callback
rng: numpy.random.RandomState for deterministic behavior
Returns:
None
"""
from scipy.cluster.vq import kmeans2
center, label = kmeans2(data, gmm.K)
for k in xrange(gmm.K):
mask = (label == k)
gmm.amp[k] = mask.sum() / len(data)
gmm.mean[k,:] = data[mask].mean(axis=0)
d_m = data[mask] - gmm.mean[k]
# funny way of saying: for each point i, do the outer product
# of d_m with its transpose and sum over i
gmm.covar[k,:,:] = (d_m[:, :, None] * d_m[:, None, :]).sum(axis=0) / len(data)