當前位置: 首頁>>代碼示例>>Python>>正文


Python vq.kmeans2方法代碼示例

本文整理匯總了Python中scipy.cluster.vq.kmeans2方法的典型用法代碼示例。如果您正苦於以下問題:Python vq.kmeans2方法的具體用法?Python vq.kmeans2怎麽用?Python vq.kmeans2使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.cluster.vq的用法示例。


在下文中一共展示了vq.kmeans2方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: determine_samples

# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def determine_samples(threshold_density, cluster_cut, n_neighbors):

    if isinstance(threshold_density, type(None)):
        return 2

    if isinstance(threshold_density, (float, int)):
        min_samples = threshold_density * 4. / 3. * np.pi * cluster_cut**3

    elif (threshold_density == 'auto'):
        modes = 2
        centroid, _ = vq.kmeans2(
            n_neighbors * 1.0, modes, iter=10, check_finite=False)
        min_samples = np.max(centroid)

    else:
        raise ValueError("Wrong value of 'threshold_density' passed\
                              to do_cluster_analysis_DBSCAN() ")

    return np.max([min_samples, 2]) 
開發者ID:Marcello-Sega,項目名稱:pytim,代碼行數:21,代碼來源:utilities_dbscan.py

示例2: test_kmeans_lost_cluster

# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def test_kmeans_lost_cluster(self):
        """This will cause kmean to have a cluster with no points."""
        data = np.fromfile(DATAFILE1, sep=", ")
        data = data.reshape((200, 2))
        initk = np.array([[-1.8127404, -0.67128041],
                         [2.04621601, 0.07401111],
                         [-2.31149087,-0.05160469]])

        res = kmeans(data, initk)

        warn_ctx = WarningManager()
        warn_ctx.__enter__()
        try:
            warnings.simplefilter('ignore', UserWarning)
            res = kmeans2(data, initk, missing='warn')
        finally:
            warn_ctx.__exit__()

        assert_raises(ClusterError, kmeans2, data, initk, missing='raise') 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:21,代碼來源:test_vq.py

示例3: test_kmeans2_init

# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def test_kmeans2_init(self):
        """Testing that kmeans2 init methods work."""
        data = np.fromfile(DATAFILE1, sep=", ")
        data = data.reshape((200, 2))

        kmeans2(data, 3, minit='points')
        kmeans2(data[:, :1], 3, minit='points')  # special case (1-D)

        # minit='random' can give warnings, filter those
        warn_ctx = WarningManager()
        warn_ctx.__enter__()
        try:
            warnings.filterwarnings('ignore',
                        message="One of the clusters is empty. Re-run")
            kmeans2(data, 3, minit='random')
            kmeans2(data[:, :1], 3, minit='random')  # special case (1-D)
        finally:
            warn_ctx.__exit__() 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:20,代碼來源:test_vq.py

示例4: findClusters_kmeans

# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def findClusters_kmeans(data):
    '''
        Cluster data using k-means
    '''
    # whiten the observations
    data_w = vq.whiten(data)

    # create the classifier object
    kmeans, labels = vq.kmeans2(
        data_w,
        k=4,
        iter=30
    )

    # fit the data
    return kmeans, labels

# the file name of the dataset 
開發者ID:drabastomek,項目名稱:practicalDataAnalysisCookbook,代碼行數:20,代碼來源:clustering_kmeans_alternative.py

示例5: kmeans

# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def kmeans(vs, ks, niter):
        centers, labels = vq.kmeans2(vs, ks, niter)
        return centers


# finding nearest neighbor 
開發者ID:hdidx,項目名稱:hdidx,代碼行數:8,代碼來源:util.py

示例6: test_kmeans2_simple

# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def test_kmeans2_simple(self):
        """Testing simple call to kmeans2 and its results."""
        initc = np.concatenate(([[X[0]], [X[1]], [X[2]]]))
        code = initc.copy()
        code1 = kmeans2(X, code, iter=1)[0]
        code2 = kmeans2(X, code, iter=2)[0]

        assert_array_almost_equal(code1, CODET1)
        assert_array_almost_equal(code2, CODET2) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:11,代碼來源:test_vq.py

示例7: test_kmeans2_rank1

# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def test_kmeans2_rank1(self):
        """Testing simple call to kmeans2 with rank 1 data."""
        data = np.fromfile(DATAFILE1, sep=", ")
        data = data.reshape((200, 2))
        data1 = data[:, 0]
        data2 = data[:, 1]

        initc = data1[:3]
        code = initc.copy()
        code1 = kmeans2(data1, code, iter=1)[0]
        code2 = kmeans2(data1, code, iter=2)[0] 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:13,代碼來源:test_vq.py

示例8: test_kmeans2_rank1_2

# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def test_kmeans2_rank1_2(self):
        """Testing simple call to kmeans2 with rank 1 data."""
        data = np.fromfile(DATAFILE1, sep=", ")
        data = data.reshape((200, 2))
        data1 = data[:, 0]

        code1 = kmeans2(data1, 2, iter=1) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:9,代碼來源:test_vq.py

示例9: test_kmeans_0k

# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def test_kmeans_0k(self):
        """Regression test for #546: fail when k arg is 0."""
        assert_raises(ValueError, kmeans, X, 0)
        assert_raises(ValueError, kmeans2, X, 0)
        assert_raises(ValueError, kmeans2, X, np.array([])) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:7,代碼來源:test_vq.py

示例10: cluster_zixi

# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def cluster_zixi(kpts, cat_num):
    # kpts: center-normalized (N, 17, 3)    
    datas = np.array(kpts)
    inds = np.where(datas[:, :, 2] == 0)
    datas[inds[0], inds[1], 0:2] = 0.5
    
    datas = datas.reshape(len(datas), -1)
    res = vq.kmeans2(datas, cat_num, minit='points', iter=100)
    return res 
開發者ID:liruilong940607,項目名稱:Pose2Seg,代碼行數:11,代碼來源:cluster_pose.py

示例11: kmeans

# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def kmeans(xs, k):
    assert xs.ndim == 2
    try:
        from sklearn.cluster import k_means
        _, labels, _ = k_means(xs.astype('float64'), k)
    except ImportError:
        from scipy.cluster.vq import kmeans2
        _, labels = kmeans2(xs, k, missing='raise')
    return labels 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:11,代碼來源:neural_doodle.py

示例12: setup_model_and_opt

# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def setup_model_and_opt(self):
        n_class = len(np.unique(self.all_y))
        x_tr = self.all_x[self.tr_mask]; y_tr = self.all_y[self.tr_mask]; n_inducing_points = len(x_tr)
        k = SparseGraphPolynomial(self.adj_mat, self.node_features, x_tr, degree=1.)
        k.offset = 0.; k.offset.fixed = True; k.variance = 1.; k.variance.fixed = True
        ind_points = kmeans2(self.node_features, n_inducing_points, minit='points')[0]
        opt = tf.train.AdamOptimizer(0.005)
        m = GraphSVGP(x_tr, y_tr, k, GPflow.likelihoods.MultiClass(n_class), ind_points,
                      num_latent=n_class, minibatch_size=len(x_tr), whiten=True, q_diag=False)
        return m, opt 
開發者ID:yincheng,項目名稱:GGP,代碼行數:12,代碼來源:al_exp.py

示例13: __init__

# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def __init__(self, data_name, random_seed):
        self.data_name = data_name.lower()
        self.random_seed = int(random_seed); np.random.seed(self.random_seed); tf.set_random_seed(self.random_seed)
        # Load data
        self.adj_mat, self.node_features, self.x_tr, self.y_tr, self.x_val, self.y_val, self.x_test, self.y_test \
            = load_data_ssl(self.data_name)
        # Init kernel
        k = SparseGraphPolynomial(self.adj_mat, self.node_features, self.x_tr, degree=3.)
        k.offset = np.abs(np.random.randn(1) + 5.); k.offset.fixed = False
        k.variance = 1.; k.variance.fixed = True
        # Init inducing points
        ind_points = kmeans2(self.node_features, len(self.x_tr), minit='points')[0]
        # Init optimizer
        self.optimizer = tf.train.AdamOptimizer(0.0005)
        # Init model
        self.m = GraphSVGP(self.x_tr, self.y_tr, k, GPflow.likelihoods.MultiClass(len(np.unique(self.y_tr))), ind_points,
                      num_latent=len(np.unique(self.y_tr)), minibatch_size=len(self.x_tr), whiten=True, q_diag=False)
        # Define housekeeping variables
        self.last_ts = time.time()
        self.iter = 0; self.check_obj_every = 200
        self.log_iter = []; self.log_t = []; self.log_obj = []; self.log_param = None; self.log_opt_state = None;
        self.param_fp = os.path.join(os.getenv('PWD'), 'ssl_param_files')
        if not (os.path.isdir(self.param_fp)):
            os.mkdir(self.param_fp)
        self.param_fp = os.path.join(self.param_fp, 'SSL-{0}-rs_{1}.p'.format(self.data_name, random_seed))
        self.m._compile(self.optimizer)
        if os.path.isfile(self.param_fp):
            print 'Param. file already exists! Loading from {0}.'.format(self.param_fp)
            self.load_snapshot(self.param_fp)
        else:
            self.save_snapshot(self.param_fp, update_before_saving=True) 
開發者ID:yincheng,項目名稱:GGP,代碼行數:33,代碼來源:ssl_exp.py

示例14: fit

# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def fit(self, vecs, iter=20, seed=123):
        """Given training vectors, run k-means for each sub-space and create
        codewords for each sub-space.

        This function should be run once first of all.

        Args:
            vecs (np.ndarray): Training vectors with shape=(N, D) and dtype=np.float32.
            iter (int): The number of iteration for k-means
            seed (int): The seed for random process

        Returns:
            object: self

        """
        assert vecs.dtype == np.float32
        assert vecs.ndim == 2
        N, D = vecs.shape
        assert self.Ks < N, "the number of training vector should be more than Ks"
        assert D % self.M == 0, "input dimension must be dividable by M"
        self.Ds = int(D / self.M)

        np.random.seed(seed)
        if self.verbose:
            print("iter: {}, seed: {}".format(iter, seed))

        # [m][ks][ds]: m-th subspace, ks-the codeword, ds-th dim
        self.codewords = np.zeros((self.M, self.Ks, self.Ds), dtype=np.float32)
        for m in range(self.M):
            if self.verbose:
                print("Training the subspace: {} / {}".format(m, self.M))
            vecs_sub = vecs[:, m * self.Ds : (m+1) * self.Ds]
            self.codewords[m], _ = kmeans2(vecs_sub, self.Ks, iter=iter, minit='points')

        return self 
開發者ID:matsui528,項目名稱:nanopq,代碼行數:37,代碼來源:pq.py

示例15: initFromKMeans

# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans2 [as 別名]
def initFromKMeans(gmm, data, covar=None, rng=np.random):
    """Initialization callback from a k-means clustering run.

    See Algorithm 1 from Bloemer & Bujna (arXiv:1312.5946)
    NOTE: The result of this call are not deterministic even if rng is set
    because scipy.cluster.vq.kmeans2 uses its own initialization.

    Args:
        gmm: A GMM to be initialized
        data: numpy array (N,D) to define the range of the component means
        covar: ignored in this callback
        rng: numpy.random.RandomState for deterministic behavior

    Returns:
        None
    """
    from scipy.cluster.vq import kmeans2
    center, label = kmeans2(data, gmm.K)
    for k in xrange(gmm.K):
        mask = (label == k)
        gmm.amp[k] = mask.sum() / len(data)
        gmm.mean[k,:] = data[mask].mean(axis=0)
        d_m = data[mask] - gmm.mean[k]
        # funny way of saying: for each point i, do the outer product
        # of d_m with its transpose and sum over i
        gmm.covar[k,:,:] = (d_m[:, :, None] * d_m[:, None, :]).sum(axis=0) / len(data) 
開發者ID:pmelchior,項目名稱:pygmmis,代碼行數:28,代碼來源:pygmmis.py


注:本文中的scipy.cluster.vq.kmeans2方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。