本文整理匯總了Python中scipy.cluster.vq.kmeans方法的典型用法代碼示例。如果您正苦於以下問題:Python vq.kmeans方法的具體用法?Python vq.kmeans怎麽用?Python vq.kmeans使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.cluster.vq
的用法示例。
在下文中一共展示了vq.kmeans方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: Kmeans
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans [as 別名]
def Kmeans(file, vocabfile, k):
np.random.seed((1000,2000))
whitened = whiten(embeddings)
codebook, distortion = kmeans(whitened, k)
clusters = [l2_nearest(embeddings, c, representatives+1) for c in codebook]
# output
print(len(codebook), distortion)
for centroid in codebook:
print(' '.join([str(x) for x in centroid]))
print()
for cluster in clusters:
print(' '.join([id_word[i] for i, d in cluster]).encode('utf-8'))
print()
# assign clusters to words
codes, _ = vq(embeddings, codebook)
for w, c in zip(word_id.keys(), codes):
print(w, c)
示例2: test_large_features
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans [as 別名]
def test_large_features(self):
# Generate a data set with large values, and run kmeans on it to
# (regression for 1077).
d = 300
n = 100
m1 = np.random.randn(d)
m2 = np.random.randn(d)
x = 10000 * np.random.randn(n, d) - 20000 * m1
y = 10000 * np.random.randn(n, d) + 20000 * m2
data = np.empty((x.shape[0] + y.shape[0], d), np.double)
data[:x.shape[0]] = x
data[x.shape[0]:] = y
kmeans(data, 2)
示例3: test_kmeans_lost_cluster
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans [as 別名]
def test_kmeans_lost_cluster(self):
"""This will cause kmean to have a cluster with no points."""
data = np.fromfile(DATAFILE1, sep=", ")
data = data.reshape((200, 2))
initk = np.array([[-1.8127404, -0.67128041],
[2.04621601, 0.07401111],
[-2.31149087,-0.05160469]])
res = kmeans(data, initk)
warn_ctx = WarningManager()
warn_ctx.__enter__()
try:
warnings.simplefilter('ignore', UserWarning)
res = kmeans2(data, initk, missing='warn')
finally:
warn_ctx.__exit__()
assert_raises(ClusterError, kmeans2, data, initk, missing='raise')
示例4: kMeansClustering
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans [as 別名]
def kMeansClustering(x,k):
# Convert list into numpy format
conv = np.asarray(x)
# Compute the centroids
centroids = kmeans(conv,k,iter=10)[0]
# Relabel the x's
labels = []
for y in range(len(x)):
minDist = float('inf')
minLabel = -1
for z in range(len(centroids)):
e = euclidean(conv[y],centroids[z])
if (e < minDist):
minDist = e
minLabel = z
labels.append(minLabel)
# Return the list of centroids and labels
return (centroids,labels)
# Performs a weighted clustering on the examples in xTest
# Returns a 1-d vector of predictions
示例5: cluster_lon_lats
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans [as 別名]
def cluster_lon_lats(self):
"""Clusters the list of lon_lats into groups """
np_lon_lats = []
for lon_lat in self.lon_lats:
dpoint = np.fromiter(lon_lat, np.dtype('float'))
np_lon_lats.append(dpoint)
data = array(np_lon_lats)
centroids, _ = kmeans(data, self.number_clusters)
idx, _ = vq(data, centroids)
self.idx = idx
self.data = data
self.centroids = centroids
# Sort the centroids by lon, then lat
sc = centroids[centroids[:,1].argsort()]
sc = sc[sc[:,0].argsort()]
self.sorted_centroids = sc.tolist()
示例6: __init__
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans [as 別名]
def __init__(self, data, kk):
# Convolutional K-means
# INPUT:
# data: matrix each column is a sample vector
# kk: number of total clusters
# ii: number of iterations for kmeans training
# OUTPUT:
# D: matrix containing center vectors in columns"""
print('starting kmeans quatization...(.py file is used)')
# Initialization of D by randomly pick from training data
col_idx = random.sample(range(0, len(data)), kk)
D = data[col_idx, :]
D = self.colnorm(D)
self.data = data
self.kk = kk
self.D = D
示例7: colorz
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans [as 別名]
def colorz(fd, n=DEFAULT_NUM_COLORS, min_v=DEFAULT_MINV, max_v=DEFAULT_MAXV,
bold_add=DEFAULT_BOLD_ADD, order_colors=True):
"""
Get the n most dominant colors of an image.
Clamps value to between min_v and max_v.
Creates bold colors using bold_add.
Total number of colors returned is 2*n, optionally ordered by hue.
Returns as a list of pairs of RGB triples.
For terminal colors, the hue order is:
red, yellow, green, cyan, blue, magenta
"""
img = Image.open(fd)
img.thumbnail(THUMB_SIZE)
obs = get_colors(img)
clamped = [clamp(color, min_v, max_v) for color in obs]
clusters, _ = kmeans(array(clamped).astype(float), n)
colors = order_by_hue(clusters) if order_colors else clusters
return list(zip(colors, [brighten(c, bold_add) for c in colors]))
示例8: mean_on_most_assigned
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans [as 別名]
def mean_on_most_assigned(x, c):
nb_c = len(c)
assign = np.zeros(nb_c)
mean = np.zeros(c.shape)
for i in range(len(x)):
y = x[i].reshape((1,2))
d = np.sqrt(np.sum(np.power(y.repeat(nb_c, axis=0) - c, 2), axis=1))
idx = d.argmin()
assign[idx] += 1
mean[idx,:] += x[i]
idx = assign.argmax()
return mean[idx,:] / assign[idx]
# def best_kmeans(pred):
# plt.scatter(pred[:,0], pred[:,1], color='b')
# c,v = kmeans(pred, 3)
# plt.scatter(c[:,0], c[:,1], color='g')
# n = most_assigned(pred, c)
# plt.scatter(c[n,0], c[n,1], color='r')
# plt.show()
示例9: sigma_bin_walls
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans [as 別名]
def sigma_bin_walls(sigma, bins):
import scipy, scipy.cluster, scipy.cluster.vq as vq
std = np.std(sigma)
if np.isclose(std, 0): return pimms.imm_array([0, np.max(sigma)])
cl = sorted(std * vq.kmeans(sigma/std, bins)[0])
cl = np.mean([cl[:-1],cl[1:]], axis=0)
return pimms.imm_array(np.concatenate(([0], cl, [np.max(sigma)])))
示例10: get_palette
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans [as 別名]
def get_palette(samples, options, return_mask=False, kmeans_iter=40):
'''Extract the palette for the set of sampled RGB values. The first
palette entry is always the background color; the rest are determined
from foreground pixels by running K-means clustering. Returns the
palette, as well as a mask corresponding to the foreground pixels.
'''
if not options.quiet:
print(' getting palette...')
bg_color = get_bg_color(samples, 6)
fg_mask = get_fg_mask(bg_color, samples, options)
centers, _ = kmeans(samples[fg_mask].astype(np.float32),
options.num_colors-1,
iter=kmeans_iter)
palette = np.vstack((bg_color, centers)).astype(np.uint8)
if not return_mask:
return palette
else:
return palette, fg_mask
######################################################################
示例11: test_kmeans_simple
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans [as 別名]
def test_kmeans_simple(self):
initc = np.concatenate(([[X[0]], [X[1]], [X[2]]]))
code = initc.copy()
code1 = kmeans(X, code, iter=1)[0]
assert_array_almost_equal(code1, CODET2)
示例12: test_kmeans_0k
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans [as 別名]
def test_kmeans_0k(self):
"""Regression test for #546: fail when k arg is 0."""
assert_raises(ValueError, kmeans, X, 0)
assert_raises(ValueError, kmeans2, X, 0)
assert_raises(ValueError, kmeans2, X, np.array([]))
示例13: run_kmeans
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans [as 別名]
def run_kmeans(self, X, K):
"""Runs k-means and returns the labels assigned to the data."""
wX = vq.whiten(X)
means, dist = vq.kmeans(wX, K, iter=100)
labels, dist = vq.vq(wX, means)
return means, labels
示例14: test_kmeans
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans [as 別名]
def test_kmeans(K=5):
"""Test k-means with the synthetic data."""
X = XMeans.generate_2d_data(K=4)
wX = vq.whiten(X)
dic, dist = vq.kmeans(wX, K, iter=100)
plt.scatter(wX[:, 0], wX[:, 1])
plt.scatter(dic[:, 0], dic[:, 1], color="m")
plt.show()
示例15: init_pseudo_inputs
# 需要導入模塊: from scipy.cluster import vq [as 別名]
# 或者: from scipy.cluster.vq import kmeans [as 別名]
def init_pseudo_inputs(self):
msg = "Dataset must have more than n_inducing [ %n ] to enable"
msg += " inference with sparse pseudo inputs"
assert self.N >= self.n_inducing, msg % (self.n_inducing)
self.should_recompile = True
# pick initial cluster centers from dataset
X = self.X.get_value()
X_sp_ = utils.kmeanspp(X, self.n_inducing)
# perform kmeans to get initial cluster centers
utils.print_with_stamp('Initialising pseudo inputs', self.name)
X_sp_, dist = kmeans(X, X_sp_, iter=200, thresh=1e-9)
# initialize symbolic tensor variable if necessary
# (this will create the self.X_sp atttribute)
self.set_params({'X_sp': X_sp_})