當前位置: 首頁>>代碼示例>>Python>>正文


Python hierarchy.dendrogram方法代碼示例

本文整理匯總了Python中scipy.cluster.hierarchy.dendrogram方法的典型用法代碼示例。如果您正苦於以下問題:Python hierarchy.dendrogram方法的具體用法?Python hierarchy.dendrogram怎麽用?Python hierarchy.dendrogram使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.cluster.hierarchy的用法示例。


在下文中一共展示了hierarchy.dendrogram方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: plotdendro

# 需要導入模塊: from scipy.cluster import hierarchy [as 別名]
# 或者: from scipy.cluster.hierarchy import dendrogram [as 別名]
def plotdendro(Z,ncluster,filename,rep_ind):
	plt.figure(figsize=(10, 15))
	plt.title('Hierarchical Clustering Dendrogram')
	plt.xlabel('sample index')
	plt.ylabel('distance')

	d = sc.dendrogram(Z,truncate_mode='lastp', p=ncluster,orientation='right',leaf_rotation=90.,leaf_font_size=20.,show_contracted=False)
	
	coord=[]
	for i in range(len(d['icoord'])):
		if d['dcoord'][i][0]==0.0 :
			coord.append(d['icoord'][i][0])
	for i in range(len(d['icoord'])):
		if d['dcoord'][i][3]==0.0 :
			coord.append(d['icoord'][i][3])

	plt.savefig(filename, dpi=100, facecolor='w', edgecolor='w',
        orientation='portrait', papertype='letter', format=None,
        transparent=True, bbox_inches=None, pad_inches=0.1,
        frameon=None) 
開發者ID:cosmo-epfl,項目名稱:glosim,代碼行數:22,代碼來源:env_corr.py

示例2: plot_dendrogram

# 需要導入模塊: from scipy.cluster import hierarchy [as 別名]
# 或者: from scipy.cluster.hierarchy import dendrogram [as 別名]
def plot_dendrogram(self, **kwargs):
        # Distances between each pair of children
        distance = np.arange(self.children.shape[0])
        position = np.arange(self.children.shape[0])

        # Create linkage matrix and then plot the dendrogram
        linkage_matrix = np.column_stack([
            self.children, distance, position]
        ).astype(float)

        # Plot the corresponding dendrogram
        fig, ax = plt.subplots(figsize=(15, 7))  # set size
        ax = dendrogram(linkage_matrix, **kwargs)
        plt.tick_params(axis='x', bottom='off', top='off', labelbottom='off')
        plt.tight_layout()
        plt.show() 
開發者ID:foxbook,項目名稱:atap,代碼行數:18,代碼來源:agglomerative.py

示例3: run_query_associations

# 需要導入模塊: from scipy.cluster import hierarchy [as 別名]
# 或者: from scipy.cluster.hierarchy import dendrogram [as 別名]
def run_query_associations(ont, aset, args):
    if args.dendrogram:
        plot_subject_term_matrix(ont, aset, args)
        return
    import plotly.plotly as py
    import plotly.graph_objs as go
    tups = aset.query_associations(subjects=args.subjects)
    for (s,c) in tups:
        print("{} {}".format(s, c))
    z, xaxis, yaxis = tuple_to_matrix(tups)
    xaxis = mk_axis(xaxis, aset, args)
    yaxis = mk_axis(yaxis, aset, args)
    logging.info("PLOTTING: {} x {} = {}".format(xaxis, yaxis, z))
    trace = go.Heatmap(z=z,
                       x=xaxis,
                       y=yaxis)
    data=[trace]
    py.plot(data, filename='labelled-heatmap')
    #plot_dendrogram(z, xaxis, yaxis)
    
# TODO: fix this really dumb implementation 
開發者ID:biolink,項目名稱:ontobio,代碼行數:23,代碼來源:ontobio-assoc.py

示例4: dendrogram

# 需要導入模塊: from scipy.cluster import hierarchy [as 別名]
# 或者: from scipy.cluster.hierarchy import dendrogram [as 別名]
def dendrogram(data, threshold, layer_directory):
    colnames = data.columns
    data = np.array(data)

    Z = hierarchy.linkage(data.T, 'single',  'cosine')
    plt.figure(figsize=(15, 9))
    dn = hierarchy.dendrogram(Z, labels = colnames, color_threshold=threshold)
    plt.title("Clustering of Samples Based on Mutational Signatures" )
    plt.ylabel("Cosine Distance")
    plt.xlabel("Sample IDs")
    #plt.ylim((0,1))
    plt.savefig(layer_directory+'/dendrogram.pdf',figsize=(10, 8), dpi=300)
    # which datapoints goes to which cluster
    # The indices of the datapoints will be displayed as the ids 
    Y = hierarchy.fcluster(Z, threshold, criterion='distance', R=None, monocrit=None)
    dataframe = pd.DataFrame({"Cluster":Y, "Sample Names":list(colnames)})
    dataframe = dataframe.set_index("Sample Names")
    #print(dataframe)
    dictionary = {"clusters":Y, "informations":dn}
    
    return dataframe 


######################################## Plot the reconstruction error vs stabilities and select the optimum number of signature #################################################### 
開發者ID:AlexandrovLab,項目名稱:SigProfilerExtractor,代碼行數:26,代碼來源:subroutines.py

示例5: plot_dendrogram

# 需要導入模塊: from scipy.cluster import hierarchy [as 別名]
# 或者: from scipy.cluster.hierarchy import dendrogram [as 別名]
def plot_dendrogram(self, show_chart=True, save_path=None, figsize=(8, 8),
                        threshold=None):
        """
        Plots the dendrogram using scipy's own method.
        :param show_chart: If True, shows the chart.
        :param save_path: local directory to save file.
        :param figsize: tuple with figsize dimensions.
        :param threshold: height of the dendrogram to color the nodes. If None, the colors of the nodes follow scipy's
                           standard behaviour, which cuts the dendrogram on 70% of its height (0.7*max(self.link[:,2]).
        """

        plt.figure(figsize=figsize)
        dn = sch.dendrogram(self.link, orientation='left', labels=self.sort_ix, color_threshold=threshold)

        plt.tight_layout()

        if not (save_path is None):
            plt.savefig(save_path,
                        pad_inches=1,
                        dpi=400)

        if show_chart:
            plt.show()

        plt.close() 
開發者ID:Finance-Hub,項目名稱:FinanceHub,代碼行數:27,代碼來源:construction.py

示例6: assign_colors

# 需要導入模塊: from scipy.cluster import hierarchy [as 別名]
# 或者: from scipy.cluster.hierarchy import dendrogram [as 別名]
def assign_colors(self):
		""" Assign colors for plotting the dendrogram """

		clusters = self.linkage_clusters
		no_IDS = self.n

		colorlist = ["blue", "green", "red", "orange"]
		node_color = ["black"] * (2*no_IDS-1)
		i = 0
		for cluster in sorted(list(clusters.keys())):
			if len(clusters[cluster]) > 1:
				color = colorlist[i]
				for node in clusters[cluster]:
					node_color[node] = color
				i += 1 

				if i == len(colorlist):
					i = 0

		self.node_color = node_color #list corresponding to each possible clustering in tree 
開發者ID:loosolab,項目名稱:TOBIAS,代碼行數:22,代碼來源:regions.py

示例7: dendrogram

# 需要導入模塊: from scipy.cluster import hierarchy [as 別名]
# 或者: from scipy.cluster.hierarchy import dendrogram [as 別名]
def dendrogram(data,
               vectorizer,
               method="ward",
               color_threshold=1,
               size=10,
               filename=None):
    """dendrogram.

    "median","centroid","weighted","single","ward","complete","average"
    """
    data = list(data)
    # get labels
    labels = []
    for graph in data:
        label = graph.graph.get('id', None)
        if label:
            labels.append(label)
    # transform input into sparse vectors
    data_matrix = vectorizer.transform(data)

    # labels
    if not labels:
        labels = [str(i) for i in range(data_matrix.shape[0])]

    # embed high dimensional sparse vectors in 2D
    from sklearn import metrics
    from scipy.cluster.hierarchy import linkage, dendrogram
    distance_matrix = metrics.pairwise.pairwise_distances(data_matrix)
    linkage_matrix = linkage(distance_matrix, method=method)
    plt.figure(figsize=(size, size))
    dendrogram(linkage_matrix,
               color_threshold=color_threshold,
               labels=labels,
               orientation='right')
    if filename is not None:
        plt.savefig(filename)
    else:
        plt.show() 
開發者ID:fabriziocosta,項目名稱:EDeN,代碼行數:40,代碼來源:__init__.py

示例8: dendrogram

# 需要導入模塊: from scipy.cluster import hierarchy [as 別名]
# 或者: from scipy.cluster.hierarchy import dendrogram [as 別名]
def dendrogram(self):
        return dendrogram(self.model, truncate_mode='lastp', p=min(12, len(self.model))) 
開發者ID:canard0328,項目名稱:malss,代碼行數:4,代碼來源:hierarchy.py

示例9: plotdendro

# 需要導入模塊: from scipy.cluster import hierarchy [as 別名]
# 或者: from scipy.cluster.hierarchy import dendrogram [as 別名]
def plotdendro(Z,ncluster,filename,rep_ind):
  plt.figure(figsize=(10, 15))
  plt.title('Hierarchical Clustering Dendrogram')
  plt.xlabel('sample index')
  plt.ylabel('distance')
  d=sc.dendrogram(Z,truncate_mode='lastp', p=ncluster,orientation='right',leaf_rotation=90.,leaf_font_size=20.,show_contracted=False)
#  coord = np.c_[np.array(d['icoord'])[:,1:3],np.array(d['dcoord'])[:,1]]
#  coord = coord[np.argsort(coord[:,2])]
  num=ncluster-1
  coord=[]
  for i in range(len(d['icoord'])):
    if d['dcoord'][i][0]==0.0 :
     coord.append(d['icoord'][i][0])
  for i in range(len(d['icoord'])):
    if d['dcoord'][i][3]==0.0 :
     coord.append(d['icoord'][i][3])
  #print d['leaves']
  #return
  #for posi in coord:
  # x = posi
  #  y = 0.05
  #  plt.plot(x, y, 'ro')
  #  plt.annotate("%2i" % rep_ind[num], (x, y), xytext=(0, -8),
  #               textcoords='offset points',
  #               va='top', ha='center')
  #  num = num-1
  #plt.show()
  
  plt.savefig(filename, dpi=100, facecolor='w', edgecolor='w',
        orientation='portrait', papertype='letter', format=None,
        transparent=True, bbox_inches=None, pad_inches=0.1,
        frameon=None) 
開發者ID:cosmo-epfl,項目名稱:glosim,代碼行數:34,代碼來源:cluster.py

示例10: clusterdistmatfull

# 需要導入模塊: from scipy.cluster import hierarchy [as 別名]
# 或者: from scipy.cluster.hierarchy import dendrogram [as 別名]
def clusterdistmatfull(distmatrixfile,sim,mode='average',plot=False):
	# Compute the clusturing on dist^2 so that the average 
	# distance of a cluster with an other is the RMS distance
	sim2 = sim*sim
	Z = sc.linkage(sim2,mode)

	# get the full tree
	plt.figure(figsize=(10, 15))
	plt.title('Hierarchical Clustering Dendrogram')
	plt.xlabel('sample index')
	plt.ylabel('distance')
	dendo = sc.dendrogram(Z,orientation='right',leaf_rotation=90.,leaf_font_size=20.,show_contracted=False)
	c_list = np.array(dendo['leaves'])

	c_count = Counter(c_list)
	nbclst = len(c_count)

	print "Number of clusters", nbclst 
	
	# c_list = np.zeros(len(sim))

	# # Change cluster groups numbering to (0:n-1)
	# for i in range(len(sim)):
	# 	c_list[i] = int(clist[i]-1)

	return c_list,Z 
開發者ID:cosmo-epfl,項目名稱:glosim,代碼行數:28,代碼來源:env_corr.py

示例11: plot_rank_order_dendrogram

# 需要導入模塊: from scipy.cluster import hierarchy [as 別名]
# 或者: from scipy.cluster.hierarchy import dendrogram [as 別名]
def plot_rank_order_dendrogram(df:pd.DataFrame, threshold:float=0.8, savename:Optional[str]=None, settings:PlotSettings=PlotSettings()) \
        -> Dict[str,Union[List[str],float]]:
    r'''
    Plots a dendrogram of features in df clustered via Spearman's rank correlation coefficient.
    Also returns a sets of features with correlation coefficients greater than the threshold

    Arguments:
        df: Pandas DataFrame containing data
        threshold: Threshold on correlation coefficient
        savename: Optional name of file to which to save the plot of feature importances
        settings: :class:`~lumin.plotting.plot_settings.PlotSettings` class to control figure appearance

    Returns:
        Dict of sets of features with correlation coefficients greater than the threshold and cluster distance
    '''

    corr = np.round(scipy.stats.spearmanr(df).correlation, 4)
    corr_condensed = hc.distance.squareform(1-np.abs(corr))  # Abs because negtaive of a feature is a trvial transformation: information unaffected
    z = hc.linkage(corr_condensed, method='average', optimal_ordering=True)

    with sns.axes_style('white'), sns.color_palette(settings.cat_palette):
        plt.figure(figsize=(settings.w_large, (0.5*len(df.columns))))
        hc.dendrogram(z, labels=df.columns, orientation='left', leaf_font_size=settings.lbl_sz, color_threshold=1-threshold)
        plt.xlabel("Distance (1 - |Spearman's Rank Correlation Coefficient|)", fontsize=settings.lbl_sz, color=settings.lbl_col)
        plt.xticks(fontsize=settings.tk_sz, color=settings.tk_col)
        if savename is not None: plt.savefig(settings.savepath/f'{savename}{settings.format}', bbox_inches='tight')
        plt.show()

    feats = df.columns
    sets = {}
    for i, merge in enumerate(z):
        if merge[2] > 1-threshold: continue
        if merge[0] <= len(z): a = [feats[int(merge[0])]]
        else:                  a = sets.pop(int(merge[0]))['children']
        if merge[1] <= len(z): b = [feats[int(merge[1])]]
        else:                  b = sets.pop(int(merge[1]))['children']
        sets[1 + i + len(z)] = {'children': [*a, *b], 'distance': merge[2]}
    return sets 
開發者ID:GilesStrong,項目名稱:lumin,代碼行數:40,代碼來源:data_viewing.py

示例12: _sort_traces

# 需要導入模塊: from scipy.cluster import hierarchy [as 別名]
# 或者: from scipy.cluster.hierarchy import dendrogram [as 別名]
def _sort_traces(self, rdt, cdt):
        """Sort row dendrogram clusters and column dendrogram clusters
        so that the background trace (above threshold) is trace 0
        and all other traces are ordered top-to-bottom (row dendrogram)
        or left-to-right (column dendrogram).

        Parameters:
        - rdt (list[dict]): The row dendrogram cluster traces.
        - cdt (list[dict]): The column dendrogram cluster traces.

        Returns:
        - tuple: The sorted row dendrogram clusters and column
            dendrogram clusters.
        """

        tmp_rdt = []
        tmp_cdt = []

        if len(rdt) > 0:
            # first, find background trace: (max 'x')
            rdt.sort(key=lambda t: -1 * max(list(t["x"])))
            tmp_rdt.append(rdt[0])
            # then, sort top-to-bottom
            r = rdt[1:]
            r.sort(key=lambda t: -1 * min(list(t["y"])))
            tmp_rdt += r
        if len(cdt) > 0:
            # background trace has max 'y'
            cdt.sort(key=lambda t: -1 * max(list(t["y"])))
            tmp_cdt.append(cdt[0])
            # sort left to right
            c = cdt[1:]
            c.sort(key=lambda t: min(list(t["x"])))
            tmp_cdt += c

        return (tmp_rdt, tmp_cdt) 
開發者ID:plotly,項目名稱:dash-bio,代碼行數:38,代碼來源:_clustergram.py

示例13: heatmap_dists

# 需要導入模塊: from scipy.cluster import hierarchy [as 別名]
# 或者: from scipy.cluster.hierarchy import dendrogram [as 別名]
def heatmap_dists(data, norm=False, labels=None, metric='euclidean', method='ward'):
    fig, (ax, cax) = plt.subplots(ncols=2,figsize=(7 * 1.05 ,7),
                                  gridspec_kw={"width_ratios":[1, 0.05]})

    if labels is None:
        try:
            labels = data.index
        except AttributeError:
            pass

    n = data.shape[0]
    assert labels is None or len(labels) == n

    dists = ssd.pdist(data, metric=metric)
    linkage = sch.linkage(dists, metric=metric, method=method)
    dendro = sch.dendrogram(linkage, no_plot=True)
    order = dendro['leaves']
    sq_form_dists = ssd.squareform(dists)[order][:, order]
    assert sq_form_dists.shape == (n,n)

    hmap = ax.imshow(sq_form_dists, aspect='auto')
    ax.set_xticks(np.arange(n))
    ax.set_yticks(np.arange(n))
    if labels is not None:
        ax.set_xticklabels(labels[order], rotation=90)
        ax.set_yticklabels(labels[order])
    cb = plt.colorbar(hmap, cax=cax)
    return fig, (ax, cax)


# Tasks 
開發者ID:ratschlab,項目名稱:pancanatlas_code_public,代碼行數:33,代碼來源:rep_dists.py

示例14: plot_subject_term_matrix

# 需要導入模塊: from scipy.cluster import hierarchy [as 別名]
# 或者: from scipy.cluster.hierarchy import dendrogram [as 別名]
def plot_subject_term_matrix(ont, aset, args):
    import numpy as np
    import pandas as pd
    import scipy.cluster.hierarchy as sch
    import scipy.spatial as scs
    df = aset.as_dataframe(subjects=args.subjects)
    print('DF={}'.format(df))
    d = scs.distance.pdist(df)
    Z = sch.linkage(d, method='complete')
    P = sch.dendrogram(Z)
    print(P) 
開發者ID:biolink,項目名稱:ontobio,代碼行數:13,代碼來源:ontobio-assoc.py

示例15: make_plot

# 需要導入模塊: from scipy.cluster import hierarchy [as 別名]
# 或者: from scipy.cluster.hierarchy import dendrogram [as 別名]
def make_plot(self):

        self.z = hc.linkage(self.data, method='average')

        self.ax = self.fig.add_subplot(1, 1, 1)

        self.dendro = \
            hc.dendrogram(self.z,
                          labels=self.data.columns,
                          color_threshold=0,
                          orientation='left',
                          ax=self.ax,
                          link_color_func=lambda x: self.color)

        _ = [
            tl.set_fontproperties(self.fp_ticklabel)
            for tl in self.ax.get_yticklabels()
        ]
        _ = [
            tl.set_fontproperties(self.fp_ticklabel)
            for tl in self.ax.get_xticklabels()
        ]

        self.ax.xaxis.grid(True, color='#FFFFFF', lw=1, ls='solid')
        self.ax.yaxis.grid(False)
        self.ax.set_axisbelow(True)
        self.ax.set_facecolor('#EAEAF2')
        list(map(lambda s: s.set_lw(0), self.ax.spines.values()))
        self.ax.tick_params(which='both', length=0) 
開發者ID:saezlab,項目名稱:pypath,代碼行數:31,代碼來源:plot.py


注:本文中的scipy.cluster.hierarchy.dendrogram方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。