本文整理匯總了Python中schema.SchemaError方法的典型用法代碼示例。如果您正苦於以下問題:Python schema.SchemaError方法的具體用法?Python schema.SchemaError怎麽用?Python schema.SchemaError使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類schema
的用法示例。
在下文中一共展示了schema.SchemaError方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: import schema [as 別名]
# 或者: from schema import SchemaError [as 別名]
def main():
"""
The main function for Skelebot CLI where the config is loaded,
arguments are parsed, and commands are executed
"""
try:
env = get_env()
config = yaml.loadConfig(env)
parser = skeleParser.SkeleParser(config, env)
executor.execute(config, parser)
except SchemaError as error:
print(SCHEMA_ERROR.format(error))
sys.exit(1)
except RuntimeError as error:
print(ERROR.format(error))
sys.exit(1)
示例2: load
# 需要導入模塊: import schema [as 別名]
# 或者: from schema import SchemaError [as 別名]
def load(cls, config):
"""Instantiate the Repository Class Object based on a config dict"""
cls.validate(config)
s3 = None
artifactory = None
if ("s3" in config):
s3 = S3Repo.load(config["s3"])
elif ("artifactory" in config):
artifactory = ArtifactoryRepo.load(config["artifactory"])
else:
raise SchemaError(None, "Repository must contain 's3' or 'artifactory' config")
artifactDicts = config["artifacts"]
artifacts = []
for artifact in artifactDicts:
newArtifact = Artifact.load(artifact)
artifacts.append(newArtifact)
return cls(artifacts, s3, artifactory)
示例3: test_validate_mising
# 需要導入模塊: import schema [as 別名]
# 或者: from schema import SchemaError [as 別名]
def test_validate_mising(self):
artifactoryDict = copy.deepcopy(self.artifactoryDict)
del artifactoryDict['url']
del artifactoryDict['repo']
del artifactoryDict['path']
try:
sb.components.artifactory.Artifactory.validate(artifactoryDict)
except SchemaError as error:
self.assertEqual(error.code, "Missing keys: 'path', 'repo', 'url'")
artifactDict = copy.deepcopy(self.artifactDict)
del artifactDict['name']
del artifactDict['file']
try:
sb.components.artifactory.Artifact.validate(artifactDict)
except SchemaError as error:
self.assertEqual(error.code, "Missing keys: 'file', 'name'")
示例4: Scm
# 需要導入模塊: import schema [as 別名]
# 或者: from schema import SchemaError [as 別名]
def Scm(spec, env, overrides, recipeSet):
# resolve with environment
spec = { k : ( env.substitute(v, "checkoutSCM::"+k) if isinstance(v, str) else v)
for (k, v) in spec.items() }
# apply overrides before creating scm instances. It's possible to switch the Scm type with an override..
matchedOverrides = []
for override in overrides:
matched, spec = override.mangle(spec, env)
if matched:
matchedOverrides.append(override)
# check schema again if any SCM override matched
if matchedOverrides:
try:
recipeSet.SCM_SCHEMA.validate({ k:v for k,v in spec.items()
if k != '__source' and k != 'recipe' })
except schema.SchemaError as e:
raise ParseError("Error validating SCM after applying scmOverrides: {}".format(str(e)))
# create scm instance
return getScm(spec, matchedOverrides, recipeSet)
示例5: auditFromData
# 需要導入模塊: import schema [as 別名]
# 或者: from schema import SchemaError [as 別名]
def auditFromData(data):
typ = data.get("type")
if typ == "git":
scm = GitAudit
elif typ == "import":
scm = ImportAudit
elif typ == "url":
scm = UrlAudit
elif typ == "svn":
scm = SvnAudit
else:
from ..errors import ParseError
raise ParseError("Cannot handle SCM: " + str(typ))
try:
data = scm.SCHEMA.validate(data)
return scm.fromData(data)
except schema.SchemaError as e:
from ..errors import ParseError
raise ParseError("Error while validating audit: {} {}".format(str(e), str(data)))
示例6: test_same_name_func
# 需要導入模塊: import schema [as 別名]
# 或者: from schema import SchemaError [as 別名]
def test_same_name_func():
"""`name_func` should be used for generating method names."""
@testsuite
class MySuite(object):
@testcase(
parameters=(("foo", "bar"), ("alpha", "beta")),
name_func=lambda func_name, kwargs: "same_name",
)
def sample_test(self, env, result, a, b):
pass
@testcase(
parameters=(("foo", "bar"), ("alpha", "beta")),
name_func=lambda func_name, kwargs: "same_name",
)
def other_test(self, env, result, a, b):
pass
with pytest.raises(SchemaError):
MultiTest(name="abc", suites=[MySuite()])
示例7: param
# 需要導入模塊: import schema [as 別名]
# 或者: from schema import SchemaError [as 別名]
def param(self, schema):
"""A decorator for validate request data"""
if not isinstance(schema, collections.Mapping):
raise TypeError('schema must be Mapping')
# add error message
schema = {k: And(v, error='%s invalid' % k)
for k, v in schema.items()}
validate = Schema(schema).validate
def decorator(f):
@functools.wraps(f)
def wrapper(*args, **kwargs):
data = self.get_data()
try:
data = validate(data)
except SchemaError as ex:
self.handle_error(str(ex))
kwargs.update(data)
return f(*args, **kwargs)
return wrapper
return decorator
示例8: validate_extras
# 需要導入模塊: import schema [as 別名]
# 或者: from schema import SchemaError [as 別名]
def validate_extras(self, data, algo_type):
builtin_key = self.builtin_keys[algo_type]
if (builtin_key in data) and (set(data.keys()) & self.customized_keys):
raise SchemaError('{} and {} cannot be specified at the same time.'.format(
builtin_key, set(data.keys()) & self.customized_keys
))
if self.missing_customized_keys(data) and builtin_key not in data:
raise SchemaError('Either customized {} ({}) or builtin {} ({}) must be set.'.format(
algo_type, self.customized_keys, algo_type, builtin_key))
if not self.missing_customized_keys(data):
class_file_name = os.path.join(data['codeDir'], data['classFileName'])
if not os.path.isfile(class_file_name):
raise SchemaError('classFileName {} not found.'.format(class_file_name))
builtin_name = data.get(builtin_key)
class_args = data.get('classArgs')
self.validate_class_args(class_args, algo_type, builtin_name)
示例9: validate_kubeflow_operators
# 需要導入模塊: import schema [as 別名]
# 或者: from schema import SchemaError [as 別名]
def validate_kubeflow_operators(self, experiment_config):
'''Validate whether the kubeflow operators are valid'''
if experiment_config.get('kubeflowConfig'):
if experiment_config.get('kubeflowConfig').get('operator') == 'tf-operator':
if experiment_config.get('trial').get('master') is not None:
raise SchemaError('kubeflow with tf-operator can not set master')
if experiment_config.get('trial').get('worker') is None:
raise SchemaError('kubeflow with tf-operator must set worker')
elif experiment_config.get('kubeflowConfig').get('operator') == 'pytorch-operator':
if experiment_config.get('trial').get('ps') is not None:
raise SchemaError('kubeflow with pytorch-operator can not set ps')
if experiment_config.get('trial').get('master') is None:
raise SchemaError('kubeflow with pytorch-operator must set master')
if experiment_config.get('kubeflowConfig').get('storage') == 'nfs':
if experiment_config.get('kubeflowConfig').get('nfs') is None:
raise SchemaError('please set nfs configuration!')
elif experiment_config.get('kubeflowConfig').get('storage') == 'azureStorage':
if experiment_config.get('kubeflowConfig').get('azureStorage') is None:
raise SchemaError('please set azureStorage configuration!')
elif experiment_config.get('kubeflowConfig').get('storage') is None:
if experiment_config.get('kubeflowConfig').get('azureStorage'):
raise SchemaError('please set storage type!')
示例10: validate_annotation_content
# 需要導入模塊: import schema [as 別名]
# 或者: from schema import SchemaError [as 別名]
def validate_annotation_content(self, experiment_config, spec_key, builtin_name):
'''
Valid whether useAnnotation and searchSpacePath is coexist
spec_key: 'advisor' or 'tuner'
builtin_name: 'builtinAdvisorName' or 'builtinTunerName'
'''
if experiment_config.get('useAnnotation'):
if experiment_config.get('searchSpacePath'):
raise SchemaError('If you set useAnnotation=true, please leave searchSpacePath empty')
else:
# validate searchSpaceFile
if experiment_config[spec_key].get(builtin_name) == 'NetworkMorphism':
return
if experiment_config[spec_key].get(builtin_name):
if experiment_config.get('searchSpacePath') is None:
raise SchemaError('Please set searchSpacePath!')
self.validate_search_space_content(experiment_config)
示例11: parse_config
# 需要導入模塊: import schema [as 別名]
# 或者: from schema import SchemaError [as 別名]
def parse_config(
file_path: Path, config_schema: Optional[schema.Schema] = None
) -> Config:
try:
contents = file_path.read_text()
except OSError as os_error:
raise tsrc.InvalidConfig(file_path, os_error)
try:
yaml = ruamel.yaml.YAML(typ="safe", pure=True)
parsed = yaml.load(contents)
except ruamel.yaml.error.YAMLError as yaml_error:
raise tsrc.InvalidConfig(file_path, yaml_error)
if config_schema:
try:
config_schema.validate(parsed)
except schema.SchemaError as schema_error:
raise tsrc.InvalidConfig(file_path, schema_error)
return Config(parsed)
示例12: check
# 需要導入模塊: import schema [as 別名]
# 或者: from schema import SchemaError [as 別名]
def check(conf_schema, conf):
"""
Validates a user-supplied JSON vs a defined schema.
Arguments:
conf_schema: The Schema object that defines the required structure.
conf: The user-supplied schema to validate against the required structure.
Returns:
Boolean: The decision about whether the JSON meets expected Schema requirements
"""
try:
conf_schema.validate(conf)
return True
except SchemaError as schema_error:
try:
# workarounds for Schema's logging approach
print(schema_error.autos[0])
detailed_error_message = schema_error.autos[2]
print(detailed_error_message.split(" in {'")[0])
# for error in schema_error.autos:
except: # pylint: disable=bare-except
logger.critical(schema_error)
return False
示例13: validate_condition_block
# 需要導入模塊: import schema [as 別名]
# 或者: from schema import SchemaError [as 別名]
def validate_condition_block(condition_block):
"""
Validates the format of the condition block that should be supplied in the template.
Arguments:
condition_block: {"condition_key_string": "ec2:ResourceTag/purpose", "condition_type_string": "StringEquals", "condition_value": "test"}
Returns:
Boolean: The decision
"""
# TODO: Validate that the values are legit somehow
CONDITION_BLOCK_SCHEMA = Schema(
{
"condition_key_string": And(Use(str)),
"condition_type_string": And(Use(str)),
"condition_value": And(Use(str)),
}
)
try:
CONDITION_BLOCK_SCHEMA.validate(condition_block)
# TODO: Try to validate whether or not the condition keys are legit
return True
except SchemaError as s_e:
logger.warning(s_e)
return False
示例14: hard_validation
# 需要導入模塊: import schema [as 別名]
# 或者: from schema import SchemaError [as 別名]
def hard_validation(inputs, errors):
"""
Parse input data for the hard validation.
:param inputs:
Input data.
:type inputs: dict
:param errors:
Errors container.
:type errors: dict
:return:
Parsed input data and errors container.
:rtype: dict, dict
"""
from schema import SchemaError
for k, v in sh.stack_nested_keys(inputs, depth=3):
for c, msg in _hard_validation(v, *k):
sh.get_nested_dicts(errors, *k)[c] = SchemaError([], [msg])
return inputs, errors
示例15: validate
# 需要導入模塊: import schema [as 別名]
# 或者: from schema import SchemaError [as 別名]
def validate(data):
if isinstance(data, str) and data == 'EMPTY':
return sh.EMPTY
try:
empty = not (data or data == 0)
except ValueError:
empty = np.isnan(data).all()
if empty:
return sh.NONE
else:
raise SchemaError('%r is not empty' % data)
# noinspection PyUnusedLocal