當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.unique_name_from_base方法代碼示例

本文整理匯總了Python中sagemaker.utils.unique_name_from_base方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.unique_name_from_base方法的具體用法?Python utils.unique_name_from_base怎麽用?Python utils.unique_name_from_base使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sagemaker.utils的用法示例。


在下文中一共展示了utils.unique_name_from_base方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _test_mnist_distributed

# 需要導入模塊: from sagemaker import utils [as 別名]
# 或者: from sagemaker.utils import unique_name_from_base [as 別名]
def _test_mnist_distributed(sagemaker_session, image_uri, instance_type, dist_backend):
    with timeout(minutes=DEFAULT_TIMEOUT):
        pytorch = PyTorch(entry_point=mnist_script,
                          role='SageMakerRole',
                          train_instance_count=2,
                          train_instance_type=instance_type,
                          sagemaker_session=sagemaker_session,
                          image_name=image_uri,
                          debugger_hook_config=False,
                          hyperparameters={'backend': dist_backend, 'epochs': 2})
        training_input = pytorch.sagemaker_session.upload_data(path=training_dir,
                                                               key_prefix='pytorch/mnist')

        job_name = utils.unique_name_from_base('test-pytorch-mnist')

        pytorch.fit({'training': training_input}, job_name=job_name) 
開發者ID:aws,項目名稱:sagemaker-pytorch-training-toolkit,代碼行數:18,代碼來源:test_mnist.py

示例2: test_mnist_gpu

# 需要導入模塊: from sagemaker import utils [as 別名]
# 或者: from sagemaker.utils import unique_name_from_base [as 別名]
def test_mnist_gpu(sagemaker_session, image_uri, dist_gpu_backend):
    with timeout(minutes=DEFAULT_TIMEOUT):
        pytorch = PyTorch(entry_point=mnist_script,
                          role='SageMakerRole',
                          train_instance_count=2,
                          image_name=image_uri,
                          train_instance_type=MULTI_GPU_INSTANCE,
                          sagemaker_session=sagemaker_session,
                          debugger_hook_config=False,
                          hyperparameters={'backend': dist_gpu_backend})

        training_input = sagemaker_session.upload_data(path=os.path.join(data_dir, 'training'),
                                                       key_prefix='pytorch/mnist')

        job_name = utils.unique_name_from_base('test-pytorch-dist-ops')
        pytorch.fit({'training': training_input}, job_name=job_name) 
開發者ID:aws,項目名稱:sagemaker-pytorch-training-toolkit,代碼行數:18,代碼來源:test_distributed_operations.py

示例3: _test_dist_operations

# 需要導入模塊: from sagemaker import utils [as 別名]
# 或者: from sagemaker.utils import unique_name_from_base [as 別名]
def _test_dist_operations(sagemaker_session, image_uri, instance_type, dist_backend, train_instance_count=3):
    with timeout(minutes=DEFAULT_TIMEOUT):
        pytorch = PyTorch(entry_point=dist_operations_path,
                          role='SageMakerRole',
                          train_instance_count=train_instance_count,
                          train_instance_type=instance_type,
                          sagemaker_session=sagemaker_session,
                          image_name=image_uri,
                          debugger_hook_config=False,
                          hyperparameters={'backend': dist_backend})

        pytorch.sagemaker_session.default_bucket()
        fake_input = pytorch.sagemaker_session.upload_data(path=dist_operations_path,
                                                           key_prefix='pytorch/distributed_operations')

        job_name = utils.unique_name_from_base('test-pytorch-dist-ops')
        pytorch.fit({'required_argument': fake_input}, job_name=job_name) 
開發者ID:aws,項目名稱:sagemaker-pytorch-training-toolkit,代碼行數:19,代碼來源:test_distributed_operations.py

示例4: test_hosting

# 需要導入模塊: from sagemaker import utils [as 別名]
# 或者: from sagemaker.utils import unique_name_from_base [as 別名]
def test_hosting(sagemaker_session, image_uri, instance_type, framework_version):
    prefix = 'mxnet-serving/default-handlers'
    model_data = sagemaker_session.upload_data(path=MODEL_PATH, key_prefix=prefix)
    model = MXNetModel(model_data,
                       'SageMakerRole',
                       SCRIPT_PATH,
                       image=image_uri,
                       framework_version=framework_version,
                       sagemaker_session=sagemaker_session)

    endpoint_name = utils.unique_name_from_base('test-mxnet-serving')
    with timeout.timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
        predictor = model.deploy(1, instance_type, endpoint_name=endpoint_name)

        output = predictor.predict([[1, 2]])
        assert [[4.9999918937683105]] == output 
開發者ID:aws,項目名稱:sagemaker-mxnet-inference-toolkit,代碼行數:18,代碼來源:test_hosting.py

示例5: test_batch_transform

# 需要導入模塊: from sagemaker import utils [as 別名]
# 或者: from sagemaker.utils import unique_name_from_base [as 別名]
def test_batch_transform(sagemaker_session, image_uri, instance_type, framework_version):
    s3_prefix = 'mxnet-serving/mnist'
    model_data = sagemaker_session.upload_data(path=MODEL_PATH, key_prefix=s3_prefix)
    model = MXNetModel(model_data,
                       'SageMakerRole',
                       SCRIPT_PATH,
                       image=image_uri,
                       framework_version=framework_version,
                       sagemaker_session=sagemaker_session)

    transformer = model.transformer(1, instance_type)
    with timeout.timeout_and_delete_model_with_transformer(transformer, sagemaker_session, minutes=20):
        input_data = sagemaker_session.upload_data(path=DATA_PATH, key_prefix=s3_prefix)

        job_name = utils.unique_name_from_base('test-mxnet-serving-batch')
        transformer.transform(input_data, content_type='text/csv', job_name=job_name)
        transformer.wait()

    prediction = _transform_result(sagemaker_session.boto_session, transformer.output_path)
    assert prediction == 7 
開發者ID:aws,項目名稱:sagemaker-mxnet-inference-toolkit,代碼行數:22,代碼來源:test_batch_transform.py

示例6: test_elastic_inference

# 需要導入模塊: from sagemaker import utils [as 別名]
# 或者: from sagemaker.utils import unique_name_from_base [as 別名]
def test_elastic_inference(image_uri, sagemaker_session, instance_type, accelerator_type, framework_version):
    endpoint_name = utils.unique_name_from_base('test-mxnet-ei')

    with timeout_and_delete_endpoint_by_name(endpoint_name=endpoint_name,
                                             sagemaker_session=sagemaker_session,
                                             minutes=20):
        prefix = 'mxnet-serving/default-handlers'
        model_data = sagemaker_session.upload_data(path=MODEL_PATH, key_prefix=prefix)
        model = MXNetModel(model_data=model_data,
                           entry_point=SCRIPT_PATH,
                           role='SageMakerRole',
                           image=image_uri,
                           framework_version=framework_version,
                           sagemaker_session=sagemaker_session)

        predictor = model.deploy(initial_instance_count=1,
                                 instance_type=instance_type,
                                 accelerator_type=accelerator_type,
                                 endpoint_name=endpoint_name)

        output = predictor.predict([[1, 2]])
        assert [[4.9999918937683105]] == output 
開發者ID:aws,項目名稱:sagemaker-mxnet-inference-toolkit,代碼行數:24,代碼來源:test_elastic_inference.py

示例7: test_mnist_distributed

# 需要導入模塊: from sagemaker import utils [as 別名]
# 或者: from sagemaker.utils import unique_name_from_base [as 別名]
def test_mnist_distributed(sagemaker_session, instance_type, tf_full_version, py_version):
    estimator = TensorFlow(
        entry_point=SCRIPT,
        role=ROLE,
        train_instance_count=2,
        train_instance_type=instance_type,
        sagemaker_session=sagemaker_session,
        py_version="py37",
        script_mode=True,
        framework_version=tf_full_version,
        distributions=PARAMETER_SERVER_DISTRIBUTION,
    )
    inputs = estimator.sagemaker_session.upload_data(
        path=os.path.join(MNIST_RESOURCE_PATH, "data"), key_prefix="scriptmode/distributed_mnist"
    )

    with tests.integ.timeout.timeout(minutes=tests.integ.TRAINING_DEFAULT_TIMEOUT_MINUTES):
        estimator.fit(inputs=inputs, job_name=unique_name_from_base("test-tf-sm-distributed"))
    assert_s3_files_exist(
        sagemaker_session,
        estimator.model_dir,
        ["graph.pbtxt", "model.ckpt-0.index", "model.ckpt-0.meta"],
    ) 
開發者ID:aws,項目名稱:sagemaker-python-sdk,代碼行數:25,代碼來源:test_tf_script_mode.py

示例8: predictor

# 需要導入模塊: from sagemaker import utils [as 別名]
# 或者: from sagemaker.utils import unique_name_from_base [as 別名]
def predictor(sagemaker_session, tf_serving_version):
    endpoint_name = unique_name_from_base("sagemaker-tensorflow-serving")
    model_data = sagemaker_session.upload_data(
        path=os.path.join(tests.integ.DATA_DIR, "tensorflow-serving-test-model.tar.gz"),
        key_prefix="tensorflow-serving/models",
    )
    with tests.integ.timeout.timeout_and_delete_endpoint_by_name(
        endpoint_name=endpoint_name, sagemaker_session=sagemaker_session, hours=2
    ):
        model = Model(
            model_data=model_data,
            role=ROLE,
            framework_version=tf_serving_version,
            sagemaker_session=sagemaker_session,
        )
        predictor = model.deploy(
            INSTANCE_COUNT,
            INSTANCE_TYPE,
            endpoint_name=endpoint_name,
            data_capture_config=DataCaptureConfig(True, sagemaker_session=sagemaker_session),
        )
        yield predictor 
開發者ID:aws,項目名稱:sagemaker-python-sdk,代碼行數:24,代碼來源:test_model_monitor.py

示例9: test_coach_mxnet

# 需要導入模塊: from sagemaker import utils [as 別名]
# 或者: from sagemaker.utils import unique_name_from_base [as 別名]
def test_coach_mxnet(sagemaker_session, rl_coach_mxnet_full_version, cpu_instance_type):
    estimator = _test_coach(
        sagemaker_session, RLFramework.MXNET, rl_coach_mxnet_full_version, cpu_instance_type
    )
    job_name = unique_name_from_base("test-coach-mxnet")

    with timeout(minutes=15):
        estimator.fit(wait="False", job_name=job_name)

        estimator = RLEstimator.attach(
            estimator.latest_training_job.name, sagemaker_session=sagemaker_session
        )

    endpoint_name = "test-mxnet-coach-deploy-{}".format(sagemaker_timestamp())

    with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
        predictor = estimator.deploy(
            1, cpu_instance_type, entry_point="mxnet_deploy.py", endpoint_name=endpoint_name
        )

        observation = numpy.asarray([0, 0, 0, 0])
        action = predictor.predict(observation)

    assert 0 < action[0][0] < 1
    assert 0 < action[0][1] < 1 
開發者ID:aws,項目名稱:sagemaker-python-sdk,代碼行數:27,代碼來源:test_rl.py

示例10: test_coach_tf

# 需要導入模塊: from sagemaker import utils [as 別名]
# 或者: from sagemaker.utils import unique_name_from_base [as 別名]
def test_coach_tf(sagemaker_session, rl_coach_tf_full_version, cpu_instance_type):
    estimator = _test_coach(
        sagemaker_session, RLFramework.TENSORFLOW, rl_coach_tf_full_version, cpu_instance_type
    )
    job_name = unique_name_from_base("test-coach-tf")

    with timeout(minutes=15):
        estimator.fit(job_name=job_name)

    endpoint_name = "test-tf-coach-deploy-{}".format(sagemaker_timestamp())

    with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
        predictor = estimator.deploy(1, cpu_instance_type)
        observation = numpy.asarray([0, 0, 0, 0])
        action = predictor.predict(observation)

    assert action == {"predictions": [[0.5, 0.5]]} 
開發者ID:aws,項目名稱:sagemaker-python-sdk,代碼行數:19,代碼來源:test_rl.py

示例11: test_ray_tf

# 需要導入模塊: from sagemaker import utils [as 別名]
# 或者: from sagemaker.utils import unique_name_from_base [as 別名]
def test_ray_tf(sagemaker_session, rl_ray_full_version, cpu_instance_type):
    source_dir = os.path.join(DATA_DIR, "ray_cartpole")
    cartpole = "train_ray.py"

    estimator = RLEstimator(
        entry_point=cartpole,
        source_dir=source_dir,
        toolkit=RLToolkit.RAY,
        framework=RLFramework.TENSORFLOW,
        toolkit_version=rl_ray_full_version,
        sagemaker_session=sagemaker_session,
        role="SageMakerRole",
        train_instance_type=cpu_instance_type,
        train_instance_count=1,
    )
    job_name = unique_name_from_base("test-ray-tf")

    with timeout(minutes=15):
        estimator.fit(job_name=job_name)

    with pytest.raises(NotImplementedError) as e:
        estimator.deploy(1, cpu_instance_type)
    assert "Automatic deployment of Ray models is not currently available" in str(e.value) 
開發者ID:aws,項目名稱:sagemaker-python-sdk,代碼行數:25,代碼來源:test_rl.py

示例12: test_failed_training_job

# 需要導入模塊: from sagemaker import utils [as 別名]
# 或者: from sagemaker.utils import unique_name_from_base [as 別名]
def test_failed_training_job(sagemaker_session, sklearn_full_version, cpu_instance_type):
    with timeout(minutes=TRAINING_DEFAULT_TIMEOUT_MINUTES):
        script_path = os.path.join(DATA_DIR, "sklearn_mnist", "failure_script.py")
        data_path = os.path.join(DATA_DIR, "sklearn_mnist")

        sklearn = SKLearn(
            entry_point=script_path,
            role="SageMakerRole",
            framework_version=sklearn_full_version,
            py_version=PYTHON_VERSION,
            train_instance_count=1,
            train_instance_type=cpu_instance_type,
            sagemaker_session=sagemaker_session,
        )

        train_input = sklearn.sagemaker_session.upload_data(
            path=os.path.join(data_path, "train"), key_prefix="integ-test-data/sklearn_mnist/train"
        )
        job_name = unique_name_from_base("test-sklearn-failed")

        with pytest.raises(ValueError):
            sklearn.fit(train_input, job_name=job_name) 
開發者ID:aws,項目名稱:sagemaker-python-sdk,代碼行數:24,代碼來源:test_sklearn_train.py

示例13: mxnet_estimator

# 需要導入模塊: from sagemaker import utils [as 別名]
# 或者: from sagemaker.utils import unique_name_from_base [as 別名]
def mxnet_estimator(sagemaker_session, mxnet_full_version, cpu_instance_type):
    mx = MXNet(
        entry_point=os.path.join(MXNET_MNIST_PATH, "mnist.py"),
        role="SageMakerRole",
        train_instance_count=1,
        train_instance_type=cpu_instance_type,
        sagemaker_session=sagemaker_session,
        framework_version=mxnet_full_version,
    )

    train_input = mx.sagemaker_session.upload_data(
        path=os.path.join(MXNET_MNIST_PATH, "train"), key_prefix="integ-test-data/mxnet_mnist/train"
    )
    test_input = mx.sagemaker_session.upload_data(
        path=os.path.join(MXNET_MNIST_PATH, "test"), key_prefix="integ-test-data/mxnet_mnist/test"
    )

    job_name = unique_name_from_base("test-mxnet-transform")
    with timeout(minutes=TRAINING_DEFAULT_TIMEOUT_MINUTES):
        mx.fit({"train": train_input, "test": test_input}, job_name=job_name)

    return mx 
開發者ID:aws,項目名稱:sagemaker-python-sdk,代碼行數:24,代碼來源:test_transformer.py

示例14: test_single_transformer_multiple_jobs

# 需要導入模塊: from sagemaker import utils [as 別名]
# 或者: from sagemaker.utils import unique_name_from_base [as 別名]
def test_single_transformer_multiple_jobs(
    mxnet_estimator, mxnet_transform_input, sagemaker_session, cpu_instance_type
):
    transformer = mxnet_estimator.transformer(1, cpu_instance_type)

    job_name = unique_name_from_base("test-mxnet-transform")
    transformer.transform(mxnet_transform_input, content_type="text/csv", job_name=job_name)
    with timeout_and_delete_model_with_transformer(
        transformer, sagemaker_session, minutes=TRANSFORM_DEFAULT_TIMEOUT_MINUTES
    ):
        assert transformer.output_path == "s3://{}/{}".format(
            sagemaker_session.default_bucket(), job_name
        )
        job_name = unique_name_from_base("test-mxnet-transform")
        transformer.transform(mxnet_transform_input, content_type="text/csv", job_name=job_name)
        assert transformer.output_path == "s3://{}/{}".format(
            sagemaker_session.default_bucket(), job_name
        ) 
開發者ID:aws,項目名稱:sagemaker-python-sdk,代碼行數:20,代碼來源:test_transformer.py

示例15: _create_transformer_and_transform_job

# 需要導入模塊: from sagemaker import utils [as 別名]
# 或者: from sagemaker.utils import unique_name_from_base [as 別名]
def _create_transformer_and_transform_job(
    estimator,
    transform_input,
    instance_type,
    volume_kms_key=None,
    input_filter=None,
    output_filter=None,
    join_source=None,
    wait=False,
    logs=False,
):
    transformer = estimator.transformer(1, instance_type, volume_kms_key=volume_kms_key)
    transformer.transform(
        transform_input,
        content_type="text/csv",
        input_filter=input_filter,
        output_filter=output_filter,
        join_source=join_source,
        wait=wait,
        logs=logs,
        job_name=unique_name_from_base("test-transform"),
    )
    return transformer 
開發者ID:aws,項目名稱:sagemaker-python-sdk,代碼行數:25,代碼來源:test_transformer.py


注:本文中的sagemaker.utils.unique_name_from_base方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。