本文整理匯總了Python中sagemaker.Session方法的典型用法代碼示例。如果您正苦於以下問題:Python sagemaker.Session方法的具體用法?Python sagemaker.Session怎麽用?Python sagemaker.Session使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sagemaker
的用法示例。
在下文中一共展示了sagemaker.Session方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import sagemaker [as 別名]
# 或者: from sagemaker import Session [as 別名]
def __init__(self, endpoint, sagemaker_session=None):
"""Initializes a SparkMLPredictor which should be used with SparkMLModel
to perform predictions against SparkML models serialized via MLeap. The
response is returned in text/csv format which is the default response
format for SparkML Serving container.
Args:
endpoint (str): The name of the endpoint to perform inference on.
sagemaker_session (sagemaker.session.Session): Session object which
manages interactions with Amazon SageMaker APIs and any other
AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain.
"""
sagemaker_session = sagemaker_session or Session()
super(SparkMLPredictor, self).__init__(
endpoint=endpoint,
sagemaker_session=sagemaker_session,
serializer=csv_serializer,
content_type=CONTENT_TYPE_CSV,
)
示例2: _is_marketplace
# 需要導入模塊: import sagemaker [as 別名]
# 或者: from sagemaker import Session [as 別名]
def _is_marketplace(self):
"""Placeholder docstring"""
model_package_name = self.model_package_arn or self._created_model_package_name
if model_package_name is None:
return True
# Models can lazy-init sagemaker_session until deploy() is called to support
# LocalMode so we must make sure we have an actual session to describe the model package.
sagemaker_session = self.sagemaker_session or sagemaker.Session()
model_package_desc = sagemaker_session.sagemaker_client.describe_model_package(
ModelPackageName=model_package_name
)
for container in model_package_desc["InferenceSpecification"]["Containers"]:
if "ProductId" in container:
return True
return False
示例3: __init__
# 需要導入模塊: import sagemaker [as 別名]
# 或者: from sagemaker import Session [as 別名]
def __init__(self, args):
"""
Args:
args:
"""
self.job_name = args.job_name
self.bucket = args.bucket_name # may be None
self.role_name = args.role_name
self.python = args.python
self.data = args.data
self.script = args.script
self.instance_type = args.instance_type
self.instance_count = args.instance_count
self.hyperparameters = self.load_hyperparameters(args.hyperparameters)
self.session = sagemaker.Session()
示例4: sagemaker_session_with_custom_bucket
# 需要導入模塊: import sagemaker [as 別名]
# 或者: from sagemaker import Session [as 別名]
def sagemaker_session_with_custom_bucket(
boto_session, sagemaker_client_config, sagemaker_runtime_config, custom_bucket_name
):
sagemaker_client_config.setdefault("config", Config(retries=dict(max_attempts=10)))
sagemaker_client = (
boto_session.client("sagemaker", **sagemaker_client_config)
if sagemaker_client_config
else None
)
runtime_client = (
boto_session.client("sagemaker-runtime", **sagemaker_runtime_config)
if sagemaker_runtime_config
else None
)
return Session(
boto_session=boto_session,
sagemaker_client=sagemaker_client,
sagemaker_runtime_client=runtime_client,
default_bucket=custom_bucket_name,
)
示例5: sagemaker_session
# 需要導入模塊: import sagemaker [as 別名]
# 或者: from sagemaker import Session [as 別名]
def sagemaker_session(sagemaker_client_config, sagemaker_runtime_config, boto_session):
sagemaker_client_config.setdefault("config", Config(retries=dict(max_attempts=10)))
sagemaker_client = (
boto_session.client("sagemaker", **sagemaker_client_config)
if sagemaker_client_config
else None
)
runtime_client = (
boto_session.client("sagemaker-runtime", **sagemaker_runtime_config)
if sagemaker_runtime_config
else None
)
return Session(
boto_session=boto_session,
sagemaker_client=sagemaker_client,
sagemaker_runtime_client=runtime_client,
)
示例6: sagemaker_session
# 需要導入模塊: import sagemaker [as 別名]
# 或者: from sagemaker import Session [as 別名]
def sagemaker_session():
boto_mock = Mock(name="boto_session", region_name=REGION)
ims = sagemaker.Session(sagemaker_client=Mock(name="sagemaker_client"), boto_session=boto_mock)
ims.sagemaker_client.describe_model = Mock(
name="describe_model", side_effect=_raise_does_not_exist_client_error
)
ims.sagemaker_client.describe_endpoint_config = Mock(
name="describe_endpoint_config", side_effect=_raise_does_not_exist_client_error
)
ims.sagemaker_client.describe_endpoint = Mock(
name="describe_endpoint", side_effect=_raise_does_not_exist_client_error
)
ims.create_model = Mock(name="create_model")
ims.create_endpoint_config = Mock(name="create_endpoint_config")
ims.create_endpoint = Mock(name="create_endpoint")
return ims
示例7: test_user_agent_injected_with_nbi
# 需要導入模塊: import sagemaker [as 別名]
# 或者: from sagemaker import Session [as 別名]
def test_user_agent_injected_with_nbi(boto_session):
assert (
"AWS-SageMaker-Python-SDK" not in boto_session.client("sagemaker")._client_config.user_agent
)
with patch("six.moves.builtins.open", mock_open(read_data="120.0-0")) as mo:
sess = Session(boto_session)
mo.assert_called_with("/etc/opt/ml/sagemaker-notebook-instance-version.txt")
assert "AWS-SageMaker-Python-SDK" in sess.sagemaker_client._client_config.user_agent
assert "AWS-SageMaker-Python-SDK" in sess.sagemaker_runtime_client._client_config.user_agent
assert "AWS-SageMaker-Notebook-Instance" in sess.sagemaker_client._client_config.user_agent
assert (
"AWS-SageMaker-Notebook-Instance" in sess.sagemaker_runtime_client._client_config.user_agent
)
示例8: test_user_agent_injected_with_nbi_ioerror
# 需要導入模塊: import sagemaker [as 別名]
# 或者: from sagemaker import Session [as 別名]
def test_user_agent_injected_with_nbi_ioerror(boto_session):
assert (
"AWS-SageMaker-Python-SDK" not in boto_session.client("sagemaker")._client_config.user_agent
)
with patch("six.moves.builtins.open", MagicMock(side_effect=IOError("File not found"))) as mo:
sess = Session(boto_session)
mo.assert_called_with("/etc/opt/ml/sagemaker-notebook-instance-version.txt")
assert "AWS-SageMaker-Python-SDK" in sess.sagemaker_client._client_config.user_agent
assert "AWS-SageMaker-Python-SDK" in sess.sagemaker_runtime_client._client_config.user_agent
assert "AWS-SageMaker-Notebook-Instance" not in sess.sagemaker_client._client_config.user_agent
assert (
"AWS-SageMaker-Notebook-Instance"
not in sess.sagemaker_runtime_client._client_config.user_agent
)
示例9: sagemaker_session_ready_lifecycle
# 需要導入模塊: import sagemaker [as 別名]
# 或者: from sagemaker import Session [as 別名]
def sagemaker_session_ready_lifecycle():
boto_mock = Mock(name="boto_session")
boto_mock.client("logs").describe_log_streams.return_value = DEFAULT_LOG_STREAMS
boto_mock.client("logs").get_log_events.side_effect = STREAM_LOG_EVENTS
ims = sagemaker.Session(boto_session=boto_mock, sagemaker_client=Mock())
ims.sagemaker_client.describe_training_job.side_effect = [
IN_PROGRESS_DESCRIBE_JOB_RESULT,
IN_PROGRESS_DESCRIBE_JOB_RESULT,
COMPLETED_DESCRIBE_JOB_RESULT,
]
ims.sagemaker_client.describe_transform_job.side_effect = [
IN_PROGRESS_DESCRIBE_TRANSFORM_JOB_RESULT,
IN_PROGRESS_DESCRIBE_TRANSFORM_JOB_RESULT,
COMPLETED_DESCRIBE_TRANSFORM_JOB_RESULT,
]
return ims
示例10: sagemaker_session_full_lifecycle
# 需要導入模塊: import sagemaker [as 別名]
# 或者: from sagemaker import Session [as 別名]
def sagemaker_session_full_lifecycle():
boto_mock = Mock(name="boto_session")
boto_mock.client("logs").describe_log_streams.side_effect = LIFECYCLE_LOG_STREAMS
boto_mock.client("logs").get_log_events.side_effect = STREAM_LOG_EVENTS
ims = sagemaker.Session(boto_session=boto_mock, sagemaker_client=Mock())
ims.sagemaker_client.describe_training_job.side_effect = [
IN_PROGRESS_DESCRIBE_JOB_RESULT,
IN_PROGRESS_DESCRIBE_JOB_RESULT,
COMPLETED_DESCRIBE_JOB_RESULT,
]
ims.sagemaker_client.describe_transform_job.side_effect = [
IN_PROGRESS_DESCRIBE_TRANSFORM_JOB_RESULT,
IN_PROGRESS_DESCRIBE_TRANSFORM_JOB_RESULT,
COMPLETED_DESCRIBE_TRANSFORM_JOB_RESULT,
]
return ims
示例11: test_download_folder_points_to_single_file
# 需要導入模塊: import sagemaker [as 別名]
# 或者: from sagemaker import Session [as 別名]
def test_download_folder_points_to_single_file(makedirs):
boto_mock = Mock(name="boto_session")
boto_mock.client("sts").get_caller_identity.return_value = {"Account": "123"}
session = sagemaker.Session(boto_session=boto_mock, sagemaker_client=Mock())
train_data = Mock()
train_data.bucket_name.return_value = BUCKET_NAME
train_data.key = "prefix/train/train_data.csv"
s3_files = [train_data]
boto_mock.resource("s3").Bucket(BUCKET_NAME).objects.filter.return_value = s3_files
obj_mock = Mock()
boto_mock.resource("s3").Object.return_value = obj_mock
# all the S3 mocks are set, the test itself begins now.
sagemaker.utils.download_folder(BUCKET_NAME, "/prefix/train/train_data.csv", "/tmp", session)
obj_mock.download_file.assert_called()
calls = [call(os.path.join("/tmp", "train_data.csv"))]
obj_mock.download_file.assert_has_calls(calls)
boto_mock.resource("s3").Bucket(BUCKET_NAME).objects.filter.assert_not_called()
obj_mock.reset_mock()
示例12: fixture_sagemaker_session
# 需要導入模塊: import sagemaker [as 別名]
# 或者: from sagemaker import Session [as 別名]
def fixture_sagemaker_session(region):
return Session(boto_session=boto3.Session(region_name=region))
示例13: fixture_sagemaker_local_session
# 需要導入模塊: import sagemaker [as 別名]
# 或者: from sagemaker import Session [as 別名]
def fixture_sagemaker_local_session(region):
return LocalSession(boto_session=boto3.Session(region_name=region))
示例14: sagemaker_session
# 需要導入模塊: import sagemaker [as 別名]
# 或者: from sagemaker import Session [as 別名]
def sagemaker_session(region):
return Session(boto_session=boto3.Session(region_name=region))
示例15: sagemaker_local_session
# 需要導入模塊: import sagemaker [as 別名]
# 或者: from sagemaker import Session [as 別名]
def sagemaker_local_session(region):
return LocalSession(boto_session=boto3.Session(region_name=region))