當前位置: 首頁>>代碼示例>>Python>>正文


Python rx.Observable方法代碼示例

本文整理匯總了Python中rx.Observable方法的典型用法代碼示例。如果您正苦於以下問題:Python rx.Observable方法的具體用法?Python rx.Observable怎麽用?Python rx.Observable使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在rx的用法示例。


在下文中一共展示了rx.Observable方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: stream_from_datetime

# 需要導入模塊: import rx [as 別名]
# 或者: from rx import Observable [as 別名]
def stream_from_datetime(cls, start_time: datetime.date, stream_from: Union[Iterable, AnyStr]):
        stream = cls.STREAMS if stream_from == 'kafka' else stream_from
        return Observable \
                    .from_(stream) \
                    .filter(lambda value: datetime.strptime(value['ts'], '%Y-%m-%d %H:%M:%S') > start_time) 
開發者ID:carlomazzaferro,項目名稱:kryptoflow,代碼行數:7,代碼來源:data_interface.py

示例2: stream_from_start

# 需要導入模塊: import rx [as 別名]
# 或者: from rx import Observable [as 別名]
def stream_from_start(cls, stream_from: Union[Iterable, AnyStr]):
        stream = cls.STREAMS if stream_from == 'kafka' else stream_from
        return Observable \
                    .from_(stream) 
開發者ID:carlomazzaferro,項目名稱:kryptoflow,代碼行數:6,代碼來源:data_interface.py

示例3: stream_from_offset

# 需要導入模塊: import rx [as 別名]
# 或者: from rx import Observable [as 別名]
def stream_from_offset(cls, offset, stream_from: Union[Iterable, AnyStr]):
        stream = cls.STREAMS if stream_from == 'kafka' else stream_from
        return Observable \
                    .from_(stream) \
                    .take_while(lambda value: datetime.now() -
                                              datetime.strptime(value['ts'], '%Y-%m-%d %H:%M:%S') > timedelta(seconds=5)) 
開發者ID:carlomazzaferro,項目名稱:kryptoflow,代碼行數:8,代碼來源:data_interface.py

示例4: execute

# 需要導入模塊: import rx [as 別名]
# 或者: from rx import Observable [as 別名]
def execute(self, *args, **kwargs):
        operation_ast = get_operation_ast(args[0])

        if operation_ast and operation_ast.operation == "subscription":
            result = subscribe(self.schema, *args, **kwargs)
            if isinstance(result, Observable):
                a = []
                result.subscribe(lambda x: a.append(x))
                if len(a) > 0:
                    result = a[-1]
            return result

        return execute(self.schema, *args, **kwargs) 
開發者ID:eamigo86,項目名稱:graphene-django-extras,代碼行數:15,代碼來源:views.py

示例5: _instantiate_chaincode

# 需要導入模塊: import rx [as 別名]
# 或者: from rx import Observable [as 別名]
def _instantiate_chaincode(chain, cc_instantiation_request, scheduler=None):
    """Instantiate chaincode.

    :param chain: chain instance
    :param cc_instantiation_request: see TransactionProposalRequest
    :param scheduler: see rx.Scheduler, defaults to None
    :return: An rx.Observable of instantiation response
    """
    if len(chain.peers) < 1:
        return rx.Observable.just(ValueError(
            "Missing peer objects on this chain"
        ))

    peers = {}
    if cc_instantiation_request and cc_instantiation_request.targets:
        peers = cc_instantiation_request.targets
        for peer in peers:
            if not chain.is_valid_peer(peer):
                return rx.Observable.just(ValueError(
                    'Request targets peer object {} not in chain'.format(peer)
                ))

    if len(peers) < 1:
        peers = chain.peers

    return rx.Observable \
        .just(cc_instantiation_request) \
        .map(check_tran_prop_request) \
        .map(lambda req, idx: _create_instantiation_proposal(req, chain))
    # .flatmap(lambda proposal, idx:
    #          send_transaction_proposal(proposal, peers, scheduler)) 
開發者ID:hyperledger,項目名稱:fabric-sdk-py,代碼行數:33,代碼來源:instantiation.py

示例6: _invoke_chaincode

# 需要導入模塊: import rx [as 別名]
# 或者: from rx import Observable [as 別名]
def _invoke_chaincode(chain, cc_invocation_request, scheduler=None):
    """Invoke chaincode.

    :param chain: chain instance
    :param scheduler: see rx.Scheduler (Default value = None)
    :param cc_invocation_request: see TransactionProposalRequest
    :return: An rx.Observable of invocation response

    """
    if len(chain.peers) < 1:
        return rx.Observable.just(ValueError(
            "Missing peer objects on this chain"
        ))

    peers = {}
    if cc_invocation_request and cc_invocation_request.targets:
        peers = cc_invocation_request.targets
        for peer in peers:
            if not chain.is_valid_peer(peer):
                return rx.Observable.just(ValueError(
                    'Request targets peer object {} not in chain'.format(peer)
                ))

    if len(peers) < 1:
        peers = chain.peers

    return rx.Observable \
        .just(cc_invocation_request) \
        .map(check_tran_prop_request) \
        .map(lambda req, idx: _create_invocation_proposal(req, chain))
    # .flatmap(lambda proposal, idx:
    #          send_transaction_proposal(proposal, peers, scheduler)) 
開發者ID:hyperledger,項目名稱:fabric-sdk-py,代碼行數:34,代碼來源:invocation.py

示例7: _write_batching

# 需要導入模塊: import rx [as 別名]
# 或者: from rx import Observable [as 別名]
def _write_batching(self, bucket, org, data,
                        precision=DEFAULT_WRITE_PRECISION,
                        **kwargs):
        if isinstance(data, bytes):
            _key = _BatchItemKey(bucket, org, precision)
            self._subject.on_next(_BatchItem(key=_key, data=data))

        elif isinstance(data, str):
            self._write_batching(bucket, org, data.encode("utf-8"),
                                 precision, **kwargs)

        elif isinstance(data, Point):
            self._write_batching(bucket, org, data.to_line_protocol(), data.write_precision, **kwargs)

        elif isinstance(data, dict):
            self._write_batching(bucket, org, Point.from_dict(data, write_precision=precision),
                                 precision, **kwargs)

        elif 'DataFrame' in type(data).__name__:
            self._write_batching(bucket, org, self._data_frame_to_list_of_points(data, precision, **kwargs),
                                 precision, **kwargs)

        elif isinstance(data, list):
            for item in data:
                self._write_batching(bucket, org, item, precision, **kwargs)

        elif isinstance(data, Observable):
            data.subscribe(lambda it: self._write_batching(bucket, org, it, precision, **kwargs))
            pass

        return None 
開發者ID:influxdata,項目名稱:influxdb-client-python,代碼行數:33,代碼來源:write_api.py

示例8: graphql

# 需要導入模塊: import rx [as 別名]
# 或者: from rx import Observable [as 別名]
def graphql(*args, **kwargs):
    # type: (*Any, **Any) -> Union[ExecutionResult, Observable, Promise[ExecutionResult]]
    return_promise = kwargs.get("return_promise", False)
    if return_promise:
        return execute_graphql_as_promise(*args, **kwargs)
    else:
        return execute_graphql(*args, **kwargs) 
開發者ID:graphql-python,項目名稱:graphql-core-legacy,代碼行數:9,代碼來源:graphql.py

示例9: execute_graphql

# 需要導入模塊: import rx [as 別名]
# 或者: from rx import Observable [as 別名]
def execute_graphql(
    schema,  # type: GraphQLSchema
    request_string="",  # type: Union[Document, str]
    root_value=None,  # type: Any
    context_value=None,  # type: Optional[Any]
    variable_values=None,  # type: Optional[Any]
    operation_name=None,  # type: Optional[Any]
    middleware=None,  # type: Optional[Any]
    backend=None,  # type: Optional[Any]
    **execute_options  # type: Any
):
    # type: (...) -> Union[ExecutionResult, Observable, Promise[ExecutionResult]]
    try:
        if backend is None:
            backend = get_default_backend()

        document = backend.document_from_string(schema, request_string)
        return document.execute(
            root_value,
            context_value,
            operation_name=operation_name,
            variable_values=variable_values,
            middleware=middleware,
            **execute_options
        )
    except Exception as e:
        return ExecutionResult(errors=[e], invalid=True) 
開發者ID:graphql-python,項目名稱:graphql-core-legacy,代碼行數:29,代碼來源:graphql.py

示例10: execute_and_validate

# 需要導入模塊: import rx [as 別名]
# 或者: from rx import Observable [as 別名]
def execute_and_validate(
    schema,  # type: GraphQLSchema
    document_ast,  # type: Document
    *args,  # type: Any
    **kwargs  # type: Any
):
    # type: (...) -> Union[ExecutionResult, Observable]
    do_validation = kwargs.get("validate", True)
    if do_validation:
        validation_errors = validate(schema, document_ast)
        if validation_errors:
            return ExecutionResult(errors=validation_errors, invalid=True)

    return execute(schema, document_ast, *args, **kwargs) 
開發者ID:graphql-python,項目名稱:graphql-core-legacy,代碼行數:16,代碼來源:core.py

示例11: on_start

# 需要導入模塊: import rx [as 別名]
# 或者: from rx import Observable [as 別名]
def on_start(self, connection_context, op_id, params):
        try:
            execution_result = self.execute(
                connection_context.request_context, params)
            assert isinstance(execution_result, Observable), \
                "A subscription must return an observable"
            execution_result.subscribe(SubscriptionObserver(
                connection_context,
                op_id,
                self.send_execution_result,
                self.send_error,
                self.on_close
            ))
        except Exception as e:
            self.send_error(connection_context, op_id, str(e)) 
開發者ID:graphql-python,項目名稱:graphql-ws,代碼行數:17,代碼來源:django_channels.py

示例12: write

# 需要導入模塊: import rx [as 別名]
# 或者: from rx import Observable [as 別名]
def write(self, bucket: str, org: str = None,
              record: Union[
                  str, List['str'], Point, List['Point'], dict, List['dict'], bytes, List['bytes'], Observable] = None,
              write_precision: WritePrecision = DEFAULT_WRITE_PRECISION, **kwargs) -> Any:
        """
        Writes time-series data into influxdb.

        :param str org: specifies the destination organization for writes; take either the ID or Name interchangeably; if both orgID and org are specified, org takes precedence. (required)
        :param str bucket: specifies the destination bucket for writes (required)
        :param WritePrecision write_precision: specifies the precision for the unix timestamps within the body line-protocol. The precision specified on a Point has precedes and is use for write.
        :param record: Points, line protocol, Pandas DataFrame, RxPY Observable to write
        :param data_frame_measurement_name: name of measurement for writing Pandas DataFrame
        :param data_frame_tag_columns: list of DataFrame columns which are tags, rest columns will be fields

        """

        if org is None:
            org = self._influxdb_client.org

        if self._point_settings.defaultTags and record is not None:
            for key, val in self._point_settings.defaultTags.items():
                self._append_default_tag(key, val, record)

        if self._write_options.write_type is WriteType.batching:
            return self._write_batching(bucket, org, record,
                                        write_precision, **kwargs)

        payloads = defaultdict(list)
        self._serialize(record, write_precision, payloads, **kwargs)

        _async_req = True if self._write_options.write_type == WriteType.asynchronous else False

        def write_payload(payload):
            final_string = b'\n'.join(payload[1])
            return self._post_write(_async_req, bucket, org, final_string, payload[0])

        results = list(map(write_payload, payloads.items()))
        if not _async_req:
            return None
        elif len(results) == 1:
            return results[0]
        return results 
開發者ID:influxdata,項目名稱:influxdb-client-python,代碼行數:44,代碼來源:write_api.py


注:本文中的rx.Observable方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。