當前位置: 首頁>>代碼示例>>Python>>正文


Python parallel.getprime方法代碼示例

本文整理匯總了Python中rsa.parallel.getprime方法的典型用法代碼示例。如果您正苦於以下問題:Python parallel.getprime方法的具體用法?Python parallel.getprime怎麽用?Python parallel.getprime使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在rsa.parallel的用法示例。


在下文中一共展示了parallel.getprime方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: gen_keys

# 需要導入模塊: from rsa import parallel [as 別名]
# 或者: from rsa.parallel import getprime [as 別名]
def gen_keys(nbits, getprime_func, accurate=True, exponent=DEFAULT_EXPONENT):
    """Generate RSA keys of nbits bits. Returns (p, q, e, d).

    Note: this can take a long time, depending on the key size.

    :param nbits: the total number of bits in ``p`` and ``q``. Both ``p`` and
        ``q`` will use ``nbits/2`` bits.
    :param getprime_func: either :py:func:`rsa.prime.getprime` or a function
        with similar signature.
    :param exponent: the exponent for the key; only change this if you know
        what you're doing, as the exponent influences how difficult your
        private key can be cracked. A very common choice for e is 65537.
    :type exponent: int
    """

    # Regenerate p and q values, until calculate_keys doesn't raise a
    # ValueError.
    while True:
        (p, q) = find_p_q(nbits // 2, getprime_func, accurate)
        try:
            (e, d) = calculate_keys_custom_exponent(p, q, exponent=exponent)
            break
        except ValueError:
            pass

    return p, q, e, d 
開發者ID:Deltares,項目名稱:aqua-monitor,代碼行數:28,代碼來源:key.py

示例2: gen_keys

# 需要導入模塊: from rsa import parallel [as 別名]
# 或者: from rsa.parallel import getprime [as 別名]
def gen_keys(nbits, getprime_func, accurate=True):
    '''Generate RSA keys of nbits bits. Returns (p, q, e, d).

    Note: this can take a long time, depending on the key size.
    
    :param nbits: the total number of bits in ``p`` and ``q``. Both ``p`` and
        ``q`` will use ``nbits/2`` bits.
    :param getprime_func: either :py:func:`rsa.prime.getprime` or a function
        with similar signature.
    '''

    (p, q) = find_p_q(nbits // 2, getprime_func, accurate)
    (e, d) = calculate_keys(p, q, nbits // 2)

    return (p, q, e, d) 
開發者ID:deadblue,項目名稱:baidupan_shell,代碼行數:17,代碼來源:key.py

示例3: newkeys

# 需要導入模塊: from rsa import parallel [as 別名]
# 或者: from rsa.parallel import getprime [as 別名]
def newkeys(nbits, accurate=True, poolsize=1, exponent=DEFAULT_EXPONENT):
    """Generates public and private keys, and returns them as (pub, priv).

    The public key is also known as the 'encryption key', and is a
    :py:class:`rsa.PublicKey` object. The private key is also known as the
    'decryption key' and is a :py:class:`rsa.PrivateKey` object.

    :param nbits: the number of bits required to store ``n = p*q``.
    :param accurate: when True, ``n`` will have exactly the number of bits you
        asked for. However, this makes key generation much slower. When False,
        `n`` may have slightly less bits.
    :param poolsize: the number of processes to use to generate the prime
        numbers. If set to a number > 1, a parallel algorithm will be used.
        This requires Python 2.6 or newer.
    :param exponent: the exponent for the key; only change this if you know
        what you're doing, as the exponent influences how difficult your
        private key can be cracked. A very common choice for e is 65537.
    :type exponent: int

    :returns: a tuple (:py:class:`rsa.PublicKey`, :py:class:`rsa.PrivateKey`)

    The ``poolsize`` parameter was added in *Python-RSA 3.1* and requires
    Python 2.6 or newer.

    """

    if nbits < 16:
        raise ValueError('Key too small')

    if poolsize < 1:
        raise ValueError('Pool size (%i) should be >= 1' % poolsize)

    # Determine which getprime function to use
    if poolsize > 1:
        from rsa import parallel
        import functools

        getprime_func = functools.partial(parallel.getprime, poolsize=poolsize)
    else:
        getprime_func = rsa.prime.getprime

    # Generate the key components
    (p, q, e, d) = gen_keys(nbits, getprime_func, accurate=accurate, exponent=exponent)

    # Create the key objects
    n = p * q

    return (
        PublicKey(n, e),
        PrivateKey(n, e, d, p, q)
    ) 
開發者ID:Deltares,項目名稱:aqua-monitor,代碼行數:53,代碼來源:key.py

示例4: newkeys

# 需要導入模塊: from rsa import parallel [as 別名]
# 或者: from rsa.parallel import getprime [as 別名]
def newkeys(nbits, accurate=True, poolsize=1):
    '''Generates public and private keys, and returns them as (pub, priv).

    The public key is also known as the 'encryption key', and is a
    :py:class:`rsa.PublicKey` object. The private key is also known as the
    'decryption key' and is a :py:class:`rsa.PrivateKey` object.

    :param nbits: the number of bits required to store ``n = p*q``.
    :param accurate: when True, ``n`` will have exactly the number of bits you
        asked for. However, this makes key generation much slower. When False,
        `n`` may have slightly less bits.
    :param poolsize: the number of processes to use to generate the prime
        numbers. If set to a number > 1, a parallel algorithm will be used.
        This requires Python 2.6 or newer.

    :returns: a tuple (:py:class:`rsa.PublicKey`, :py:class:`rsa.PrivateKey`)

    The ``poolsize`` parameter was added in *Python-RSA 3.1* and requires
    Python 2.6 or newer.
    
    '''

    if nbits < 16:
        raise ValueError('Key too small')

    if poolsize < 1:
        raise ValueError('Pool size (%i) should be >= 1' % poolsize)

    # Determine which getprime function to use
    if poolsize > 1:
        from rsa import parallel
        import functools

        getprime_func = functools.partial(parallel.getprime, poolsize=poolsize)
    else: getprime_func = rsa.prime.getprime

    # Generate the key components
    (p, q, e, d) = gen_keys(nbits, getprime_func)
    
    # Create the key objects
    n = p * q

    return (
        PublicKey(n, e),
        PrivateKey(n, e, d, p, q)
    ) 
開發者ID:deadblue,項目名稱:baidupan_shell,代碼行數:48,代碼來源:key.py

示例5: newkeys

# 需要導入模塊: from rsa import parallel [as 別名]
# 或者: from rsa.parallel import getprime [as 別名]
def newkeys(nbits, accurate=True, poolsize=1, exponent=DEFAULT_EXPONENT):
    """Generates public and private keys, and returns them as (pub, priv).

    The public key is also known as the 'encryption key', and is a
    :py:class:`rsa.PublicKey` object. The private key is also known as the
    'decryption key' and is a :py:class:`rsa.PrivateKey` object.

    :param nbits: the number of bits required to store ``n = p*q``.
    :param accurate: when True, ``n`` will have exactly the number of bits you
        asked for. However, this makes key generation much slower. When False,
        `n`` may have slightly less bits.
    :param poolsize: the number of processes to use to generate the prime
        numbers. If set to a number > 1, a parallel algorithm will be used.
        This requires Python 2.6 or newer.
    :param exponent: the exponent for the key; only change this if you know
        what you're doing, as the exponent influences how difficult your
        private key can be cracked. A very common choice for e is 65537.
    :type exponent: int

    :returns: a tuple (:py:class:`rsa.PublicKey`, :py:class:`rsa.PrivateKey`)

    The ``poolsize`` parameter was added in *Python-RSA 3.1* and requires
    Python 2.6 or newer.

    """

    if nbits < 16:
        raise ValueError('Key too small')

    if poolsize < 1:
        raise ValueError('Pool size (%i) should be >= 1' % poolsize)

    # Determine which getprime function to use
    if poolsize > 1:
        from rsa import parallel
        import functools

        getprime_func = functools.partial(parallel.getprime, poolsize=poolsize)
    else:
        getprime_func = third_party.rsa.prime.getprime

    # Generate the key components
    (p, q, e, d) = gen_keys(nbits, getprime_func, accurate=accurate, exponent=exponent)

    # Create the key objects
    n = p * q

    return (
        PublicKey(n, e),
        PrivateKey(n, e, d, p, q)
    ) 
開發者ID:GoogleCloudPlatform,項目名稱:iot-core-micropython,代碼行數:53,代碼來源:key.py


注:本文中的rsa.parallel.getprime方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。