本文整理匯總了Python中rpn.rpn.assign_anchor方法的典型用法代碼示例。如果您正苦於以下問題:Python rpn.assign_anchor方法的具體用法?Python rpn.assign_anchor怎麽用?Python rpn.assign_anchor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類rpn.rpn
的用法示例。
在下文中一共展示了rpn.assign_anchor方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: parfetch
# 需要導入模塊: from rpn import rpn [as 別名]
# 或者: from rpn.rpn import assign_anchor [as 別名]
def parfetch(self, iroidb):
# get testing data for multigpu
data, label = get_rpn_batch(iroidb, self.cfg)
data_shape = {k: v.shape for k, v in data.items()}
del data_shape['im_info']
_, feat_shape, _ = self.feat_sym.infer_shape(**data_shape)
feat_shape = [int(i) for i in feat_shape[0]]
# add gt_boxes to data for e2e
data['gt_boxes'] = label['gt_boxes'][np.newaxis, :, :]
# assign anchor for label
label = assign_anchor(feat_shape, label['gt_boxes'], data['im_info'], self.cfg,
self.feat_stride, self.anchor_scales,
self.anchor_ratios, self.allowed_border)
return {'data': data, 'label': label}
示例2: infer_shape
# 需要導入模塊: from rpn import rpn [as 別名]
# 或者: from rpn.rpn import assign_anchor [as 別名]
def infer_shape(self, max_data_shape=None, max_label_shape=None):
""" Return maximum data and label shape for single gpu """
if max_data_shape is None:
max_data_shape = []
if max_label_shape is None:
max_label_shape = []
max_shapes = dict(max_data_shape + max_label_shape)
input_batch_size = max_shapes['data'][0]
im_info = [[max_shapes['data'][2], max_shapes['data'][3], 1.0]]
_, feat_shape, _ = self.feat_sym.infer_shape(**max_shapes)
label = assign_anchor(feat_shape[0], np.zeros((0, 5)), im_info, self.cfg,
self.feat_stride, self.anchor_scales, self.anchor_ratios, self.allowed_border,
self.normalize_target, self.bbox_mean, self.bbox_std)
label = [label[k] for k in self.label_name]
label_shape = [(k, tuple([input_batch_size] + list(v.shape[1:]))) for k, v in zip(self.label_name, label)]
return max_data_shape, label_shape
示例3: parfetch
# 需要導入模塊: from rpn import rpn [as 別名]
# 或者: from rpn.rpn import assign_anchor [as 別名]
def parfetch(self, iroidb):
# get testing data for multigpu
data, label = get_rpn_triple_batch(iroidb, self.cfg)
data_shape = {k: v.shape for k, v in data.items()}
del data_shape['im_info']
_, feat_shape, _ = self.feat_sym.infer_shape(**data_shape)
feat_shape = [int(i) for i in feat_shape[0]]
# add gt_boxes to data for e2e
data['gt_boxes'] = label['gt_boxes'][np.newaxis, :, :]
data['occluded'] = label['occluded']
data['delta_bef_gt'] = label['delta_bef_gt']
data['delta_aft_gt'] = label['delta_aft_gt']
# assign anchor for label
label = assign_anchor(feat_shape, label['gt_boxes'], data['im_info'], self.cfg,
self.feat_stride, self.anchor_scales,
self.anchor_ratios, self.allowed_border,
self.normalize_target, self.bbox_mean, self.bbox_std)
#print '###################################begin parfetch##########################'
#print 'data[gt_boxes]', data['gt_boxes']
#print 'data[delta_bef]', data['delta_bef']
#print 'data[delta_aft]', data['delta_aft']
return {'data': data, 'label': label}
示例4: parfetch
# 需要導入模塊: from rpn import rpn [as 別名]
# 或者: from rpn.rpn import assign_anchor [as 別名]
def parfetch(self, iroidb):
# get testing data for multigpu
data, label = get_rpn_pair_batch(iroidb, self.cfg)
data_shape = {k: v.shape for k, v in data.items()}
del data_shape['im_info']
_, feat_shape, _ = self.feat_sym.infer_shape(**data_shape)
feat_shape = [int(i) for i in feat_shape[0]]
# add gt_boxes to data for e2e
data['gt_boxes'] = label['gt_boxes'][np.newaxis, :, :]
# assign anchor for label
label = assign_anchor(feat_shape, label['gt_boxes'], data['im_info'], self.cfg,
self.feat_stride, self.anchor_scales,
self.anchor_ratios, self.allowed_border,
self.normalize_target, self.bbox_mean, self.bbox_std)
return {'data': data, 'label': label}
示例5: parfetch
# 需要導入模塊: from rpn import rpn [as 別名]
# 或者: from rpn.rpn import assign_anchor [as 別名]
def parfetch(self, iroidb):
# get testing data for multigpu
data, label = get_rpn_triple_batch(iroidb, self.cfg)
data_shape = {k: v.shape for k, v in data.items()}
del data_shape['im_info']
_, feat_shape, _ = self.feat_sym.infer_shape(**data_shape)
feat_shape = [int(i) for i in feat_shape[0]]
# add gt_boxes to data for e2e
data['gt_boxes'] = label['gt_boxes'][np.newaxis, :, :]
# assign anchor for label
label = assign_anchor(feat_shape, label['gt_boxes'], data['im_info'], self.cfg,
self.feat_stride, self.anchor_scales,
self.anchor_ratios, self.allowed_border,
self.normalize_target, self.bbox_mean, self.bbox_std)
return {'data': data, 'label': label}
示例6: parfetch
# 需要導入模塊: from rpn import rpn [as 別名]
# 或者: from rpn.rpn import assign_anchor [as 別名]
def parfetch(self, iroidb):
# get testing data for multigpu
data, label = get_rpn_batch(iroidb, self.cfg)
data_shape = {k: v.shape for k, v in data.items()}
del data_shape['im_info']
_, feat_shape, _ = self.feat_sym.infer_shape(**data_shape)
feat_shape = [int(i) for i in feat_shape[0]]
# add gt_boxes to data for e2e
data['gt_boxes'] = label['gt_boxes'][np.newaxis, :, :]
# assign anchor for label
label = assign_anchor(feat_shape, label['gt_boxes'], data['im_info'], self.cfg,
self.feat_stride, self.anchor_scales,
self.anchor_ratios, self.allowed_border,
self.normalize_target, self.bbox_mean, self.bbox_std)
return {'data': data, 'label': label}
示例7: parfetch
# 需要導入模塊: from rpn import rpn [as 別名]
# 或者: from rpn.rpn import assign_anchor [as 別名]
def parfetch(self, iroidb):
# get testing data for multigpu
data, label = get_rpn_batch(iroidb, self.cfg)
data_shape = {k: v.shape for k, v in data.items()}
del data_shape['im_info']
_, feat_shape, _ = self.feat_sym.infer_shape(**data_shape)
feat_shape = [int(i) for i in feat_shape[0]]
# add gt_boxes to data for e2e
data['gt_boxes'] = label['gt_boxes'][np.newaxis, :, :]
# assign anchor for label
label = assign_anchor(feat_shape, label['gt_boxes'], data['im_info'], self.cfg,
self.feat_stride, self.anchor_scales,
self.anchor_ratios, self.allowed_border)
return {'data': data, 'label': label}
# TODO test this dataloader for quadrangle
示例8: infer_shape
# 需要導入模塊: from rpn import rpn [as 別名]
# 或者: from rpn.rpn import assign_anchor [as 別名]
def infer_shape(self, max_data_shape=None, max_label_shape=None):
""" Return maximum data and label shape for single gpu """
if max_data_shape is None:
max_data_shape = []
if max_label_shape is None:
max_label_shape = []
max_shapes = dict(max_data_shape + max_label_shape)
input_batch_size = max_shapes['data'][0]
im_info = [[max_shapes['data'][2], max_shapes['data'][3], 1.0]]
feat_shape = max_shapes['data']
H = int(np.ceil(feat_shape[2] * 1.0 / self.feat_stride))
W = int(np.ceil(feat_shape[3] * 1.0 / self.feat_stride))
_, feat_shape, _ = self.feat_sym.infer_shape(**max_shapes)
label = assign_anchor(feat_shape[0], np.zeros((0, 5)), im_info, self.cfg,
self.feat_stride, self.anchor_scales, self.anchor_ratios, self.allowed_border,
self.normalize_target, self.bbox_mean, self.bbox_std)
label = [label[k] for k in self.label_name]
label_shape = [(k, tuple([input_batch_size] + list(v.shape[1:]))) for k, v in zip(self.label_name, label)]
return max_data_shape, label_shape
示例9: parfetch
# 需要導入模塊: from rpn import rpn [as 別名]
# 或者: from rpn.rpn import assign_anchor [as 別名]
def parfetch(self, iroidb):
# get testing data for multigpu
data, label = get_rpn_triple_batch(iroidb, self.cfg)
data_shape = {k: v.shape for k, v in data.items()}
del data_shape['im_info']
_, feat_shape, _ = self.feat_sym.infer_shape(**data_shape)
feat_shape = [int(i) for i in feat_shape[0]]
# add gt_boxes to data for e2e
data['gt_boxes'] = label['gt_boxes'][np.newaxis, :, :]
# assign anchor for label
label_f = assign_anchor(feat_shape, label['gt_boxes'], data['im_info'], self.cfg,
self.feat_stride, self.anchor_scales,
self.anchor_ratios, self.allowed_border,
self.normalize_target, self.bbox_mean, self.bbox_std)
return {'data': data, 'label': label_f}
示例10: infer_shape
# 需要導入模塊: from rpn import rpn [as 別名]
# 或者: from rpn.rpn import assign_anchor [as 別名]
def infer_shape(self, max_data_shape=None, max_label_shape=None):
""" Return maximum data and label shape for single gpu """
if max_data_shape is None:
max_data_shape = []
if max_label_shape is None:
max_label_shape = []
max_shapes = dict(max_data_shape + max_label_shape)
input_batch_size = max_shapes['data'][0]
im_info = [[max_shapes['data'][2], max_shapes['data'][3], 1.0]]
_, feat_shape, _ = self.feat_sym.infer_shape(**max_shapes)
label = assign_anchor(feat_shape[0], np.zeros((0, 5)), im_info, self.cfg,
self.feat_stride, self.anchor_scales, self.anchor_ratios, self.allowed_border)
label = [label[k] for k in self.label_name]
label_shape = [(k, tuple([input_batch_size] + list(v.shape[1:]))) for k, v in zip(self.label_name, label)]
return max_data_shape, label_shape