當前位置: 首頁>>代碼示例>>Python>>正文


Python linear_feature_baseline.LinearFeatureBaseline方法代碼示例

本文整理匯總了Python中rllab.baselines.linear_feature_baseline.LinearFeatureBaseline方法的典型用法代碼示例。如果您正苦於以下問題:Python linear_feature_baseline.LinearFeatureBaseline方法的具體用法?Python linear_feature_baseline.LinearFeatureBaseline怎麽用?Python linear_feature_baseline.LinearFeatureBaseline使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在rllab.baselines.linear_feature_baseline的用法示例。


在下文中一共展示了linear_feature_baseline.LinearFeatureBaseline方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: from rllab.baselines import linear_feature_baseline [as 別名]
# 或者: from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline [as 別名]
def main():
    env = GymEnv('Pendulum-v0', record_video=False, force_reset=True)

    observation_dim = np.prod(env.observation_space.shape)
    action_dim = np.prod(env.action_space.shape)

    policy = GaussianMLPPolicy(
        observation_dim=observation_dim,
        action_dim=action_dim,
        hidden_sizes=(100, 100))

    algo = TRPO(
        env=env,
        policy=policy,
        baseline=LinearFeatureBaseline(env_spec=env.spec),
        batch_size=10000,
        max_path_length=env.horizon,
        n_itr=100,
        discount=0.99,
        store_paths=True,
        step_size=0.01,
    )

    with logdir(algo=algo, dirname='data/irl/pendulum'):
        algo.train() 
開發者ID:nosyndicate,項目名稱:pytorchrl,代碼行數:27,代碼來源:pendulum_data_collect.py

示例2: main

# 需要導入模塊: from rllab.baselines import linear_feature_baseline [as 別名]
# 或者: from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline [as 別名]
def main(exp_name=None, ent_wt=1.0):
    tf.reset_default_graph()
    env = TfEnv(CustomGymEnv('CustomAnt-v0', record_video=False, record_log=False, force_reset=False))
    policy = GaussianMLPPolicy(name='policy', env_spec=env.spec, hidden_sizes=(32, 32))
    with tf.Session(config=get_session_config()) as sess:
        algo = TRPO(
            env=env,
            sess=sess,
            policy=policy,
            n_itr=2000,
            batch_size=20000,
            max_path_length=500, 
            discount=0.99,
            store_paths=True,
            entropy_weight=ent_wt,
            baseline=LinearFeatureBaseline(env_spec=env.spec),
            exp_name=exp_name,
        )
        #with rllab_logdir(algo=algo, dirname='data/ant_data_collect'):#/%s'%exp_name):
        with rllab_logdir(algo=algo, dirname='data/ant_data_collect/%s'%exp_name):
            algo.train() 
開發者ID:ahq1993,項目名稱:inverse_rl,代碼行數:23,代碼來源:ant_data_collect.py

示例3: main

# 需要導入模塊: from rllab.baselines import linear_feature_baseline [as 別名]
# 或者: from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline [as 別名]
def main(exp_name, ent_wt=1.0):
    tf.reset_default_graph()
    env = TfEnv(CustomGymEnv('CustomAnt-v0', record_video=False, record_log=False))
    policy = GaussianMLPPolicy(name='policy', env_spec=env.spec, hidden_sizes=(32, 32))
    with tf.Session(config=get_session_config()) as sess:
        algo = TRPO(
            env=env,
            sess=sess,
            policy=policy,
            n_itr=1500,
            batch_size=20000,
            max_path_length=500,
            discount=0.99,
            store_paths=True,
            entropy_weight=ent_wt,
            baseline=LinearFeatureBaseline(env_spec=env.spec),
            exp_name=exp_name,
        )
        with rllab_logdir(algo=algo, dirname='data/ant_data_collect/%s'%exp_name):
            algo.train() 
開發者ID:justinjfu,項目名稱:inverse_rl,代碼行數:22,代碼來源:ant_data_collect.py

示例4: main

# 需要導入模塊: from rllab.baselines import linear_feature_baseline [as 別名]
# 或者: from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline [as 別名]
def main():
    env = TfEnv(GymEnv('Pendulum-v0', record_video=False, record_log=False))
    policy = GaussianMLPPolicy(name='policy', env_spec=env.spec, hidden_sizes=(32, 32))
    algo = TRPO(
        env=env,
        policy=policy,
        n_itr=200,
        batch_size=1000,
        max_path_length=100,
        discount=0.99,
        store_paths=True,
        baseline=LinearFeatureBaseline(env_spec=env.spec)
    )

    with rllab_logdir(algo=algo, dirname='data/pendulum'):
        algo.train() 
開發者ID:justinjfu,項目名稱:inverse_rl,代碼行數:18,代碼來源:pendulum_data_collect.py

示例5: main

# 需要導入模塊: from rllab.baselines import linear_feature_baseline [as 別名]
# 或者: from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline [as 別名]
def main():
    env = GymEnv('Pendulum-v0', record_video=False, record_log=False)

    experts = load_latest_experts('data/irl/pendulum', n=5)

    irl_model = AIRL(env_spec=env.spec, expert_trajs=experts)
    observation_dim = np.prod(env.observation_space.shape)
    action_dim = np.prod(env.action_space.shape)

    policy = GaussianMLPPolicy(
        observation_dim=observation_dim,
        action_dim=action_dim,
        # The neural network policy should have two hidden layers, each with 32 hidden units.
        hidden_sizes=(32, 32))

    algo = IRLTRPO(
        env=env,
        policy=policy,
        irl_model=irl_model,
        n_itr=200,
        batch_size=4000,
        max_path_length=100,
        discount=0.99,
        store_paths=True,
        discrim_train_itrs=50,
        irl_model_wt=1.0,
        # TODO (ewei), it seems adding the policy entropy term will worsen the result
        # compared to not use entropy at all
        entropy_weight=0.1, # This should be 1.0 but 0.1 seems to work better
        zero_environment_reward=True,
        baseline=LinearFeatureBaseline(env_spec=env.spec),
    )


    algo.train() 
開發者ID:nosyndicate,項目名稱:pytorchrl,代碼行數:37,代碼來源:airl_pendulum.py

示例6: run_task

# 需要導入模塊: from rllab.baselines import linear_feature_baseline [as 別名]
# 或者: from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline [as 別名]
def run_task(*_):
    env = GymEnv("CartPole-v0", record_video=False, force_reset=True)

    observation_dim = np.prod(env.observation_space.shape)
    num_actions = env.action_space.n

    policy = CategoricalMLPPolicy(
        observation_dim=observation_dim,
        num_actions=num_actions,
        # The neural network policy should have two hidden layers, each with 32 hidden units.
        hidden_sizes=(32, 32)
    )

    baseline = LinearFeatureBaseline(env_spec=env.spec)

    algo = TRPO(
        env=env,
        policy=policy,
        baseline=baseline,
        batch_size=4000,
        max_path_length=env.horizon,
        n_itr=1,
        discount=0.99,
        step_size=0.01,
        use_finite_diff_hvp=True,
        symmetric_finite_diff=False,
        # Uncomment both lines (this and the plot parameter below) to enable plotting
        # plot=True,
    )
    algo.train()

# if __name__ == '__main__':
#     run_task() 
開發者ID:nosyndicate,項目名稱:pytorchrl,代碼行數:35,代碼來源:trpo_cartpole.py

示例7: run_task

# 需要導入模塊: from rllab.baselines import linear_feature_baseline [as 別名]
# 或者: from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline [as 別名]
def run_task(*_):
    # Please note that different environments with different action spaces may
    # require different policies. For example with a Discrete action space, a
    # CategoricalMLPPolicy works, but for a Box action space may need to use
    # a GaussianMLPPolicy (see the trpo_gym_pendulum.py example)
    env = normalize(GymEnv("CartPole-v0", record_video=False, force_reset=True))

    policy = CategoricalMLPPolicy(
        env_spec=env.spec,
        # The neural network policy should have two hidden layers, each with 32 hidden units.
        hidden_sizes=(32, 32)
    )

    baseline = LinearFeatureBaseline(env_spec=env.spec)

    algo = TRPO(
        env=env,
        policy=policy,
        baseline=baseline,
        batch_size=4000,
        max_path_length=env.horizon,
        n_itr=50,
        discount=0.99,
        step_size=0.01,
        optimizer=ConjugateGradientOptimizer(hvp_approach=FiniteDifferenceHvp(base_eps=1e-5, symmetric=False))
        # Uncomment both lines (this and the plot parameter below) to enable plotting
        # plot=True,
    )
    algo.train() 
開發者ID:nosyndicate,項目名稱:pytorchrl,代碼行數:31,代碼來源:trpo_rllab_cartpole.py

示例8: run_task

# 需要導入模塊: from rllab.baselines import linear_feature_baseline [as 別名]
# 或者: from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline [as 別名]
def run_task(*_):
    env = GymEnv('Pendulum-v0', record_video=False, force_reset=True)

    observation_dim = np.prod(env.observation_space.shape)
    action_dim = np.prod(env.action_space.shape)

    policy = GaussianMLPPolicy(
        observation_dim=observation_dim,
        action_dim=action_dim,
        # The neural network policy should have two hidden layers, each with 32 hidden units.
        hidden_sizes=(32, 32))

    baseline= LinearFeatureBaseline(env_spec=env.spec)

    algo = TRPO(
        env=env,
        policy=policy,
        baseline=baseline,
        batch_size=10000,
        max_path_length=env.horizon,
        n_itr=50,
        discount=0.99,
        step_size=0.01,
        # Uncomment both lines (this and the plot parameter below) to enable plotting
        # plot=True,
    )
    algo.train() 
開發者ID:nosyndicate,項目名稱:pytorchrl,代碼行數:29,代碼來源:trpo_pendulum.py

示例9: run_task

# 需要導入模塊: from rllab.baselines import linear_feature_baseline [as 別名]
# 或者: from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline [as 別名]
def run_task(*_):
    # Please note that different environments with different action spaces may require different
    # policies. For example with a Box action space, a GaussianMLPPolicy works, but for a Discrete
    # action space may need to use a CategoricalMLPPolicy (see the trpo_gym_cartpole.py example)
    env = normalize(GymEnv("Pendulum-v0", record_video=False, force_reset=True))

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        # The neural network policy should have two hidden layers, each with 32 hidden units.
        hidden_sizes=(32, 32)
    )

    baseline = LinearFeatureBaseline(env_spec=env.spec)

    algo = TRPO(
        env=env,
        policy=policy,
        baseline=baseline,
        batch_size=4000,
        max_path_length=env.horizon,
        n_itr=50,
        discount=0.99,
        step_size=0.01,
        optimizer=ConjugateGradientOptimizer(hvp_approach=FiniteDifferenceHvp(base_eps=1e-5, symmetric=False))
        # Uncomment both lines (this and the plot parameter below) to enable plotting
        # plot=True,
    )
    algo.train() 
開發者ID:nosyndicate,項目名稱:pytorchrl,代碼行數:30,代碼來源:trpo_rllab_pendulum.py

示例10: main

# 需要導入模塊: from rllab.baselines import linear_feature_baseline [as 別名]
# 或者: from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline [as 別名]
def main():
    env = GymEnv('Pendulum-v0', record_video=False, record_log=False)

    experts = load_latest_experts('data/irl/pendulum2', n=5)

    irl_model = GAIL(env_spec=env.spec, expert_trajs=experts)
    observation_dim = np.prod(env.observation_space.shape)
    action_dim = np.prod(env.action_space.shape)

    policy = GaussianMLPPolicy(
        observation_dim=observation_dim,
        action_dim=action_dim,
        # The neural network policy should have two hidden layers, each with 32 hidden units.
        hidden_sizes=(32, 32))

    algo = IRLTRPO(
        env=env,
        policy=policy,
        irl_model=irl_model,
        n_itr=200,
        batch_size=4000,
        max_path_length=100,
        discount=0.99,
        store_paths=True,
        discrim_train_itrs=50,
        irl_model_wt=1.0,
        entropy_weight=0.0, # GAIL should not use entropy unless for exploration
        zero_environment_reward=True,
        baseline=LinearFeatureBaseline(env_spec=env.spec),
    )


    algo.train() 
開發者ID:nosyndicate,項目名稱:pytorchrl,代碼行數:35,代碼來源:gail_pendulum.py

示例11: main

# 需要導入模塊: from rllab.baselines import linear_feature_baseline [as 別名]
# 或者: from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline [as 別名]
def main(exp_name=None, fusion=True):
    env = TfEnv(CustomGymEnv('CustomAnt-v0', record_video=False, record_log=False))
    # load ~2 iterations worth of data from each forward RL experiment as demos
    experts = load_latest_experts_multiple_runs('data/ant_data_collect', n=2)
    #experts = load_latest_experts('data/ant_data_collect', n=5)

    #qvar: inverse model q(a|s,s')
    qvar= GaussianMLPInversePolicy(name='qvar_model', env_spec=env.spec, hidden_sizes=(32, 32))
    qvar_model = Qvar(env=env,qvar=qvar, expert_trajs=experts, fusion=True, max_itrs=10)
    #Empowerment-based Adversarial Inverse Reinforcement Learning, set score_discrim=True 
    irl_model = EAIRL(env=env, expert_trajs=experts, state_only=False, fusion=fusion, max_itrs=10, score_discrim=True)

    #Empowerment-based potential functions gamma* Phi(s')-Phi(s)
    empw_model = Empowerment(env=env,fusion=True, max_itrs=4)
    t_empw_model = Empowerment(env=env,scope='t_efn',fusion=True, max_itrs=2, name='empowerment2')


    policy = GaussianMLPPolicy(name='policy', env_spec=env.spec, hidden_sizes=(32, 32))
    algo = IRLTRPO(
        env=env,
        policy=policy,
		empw=empw_model,
		tempw=t_empw_model,
        qvar_model=qvar_model,
        irl_model=irl_model,
        n_itr=130,
        batch_size=20000,
        max_path_length=500,
        discount=0.99,
        store_paths=True,
        target_empw_update=5,
        irl_model_wt=1.0,
        entropy_weight=0.1,
        lambda_i=1.0,
        zero_environment_reward=True,
        baseline=LinearFeatureBaseline(env_spec=env.spec),
    )
    with rllab_logdir(algo=algo, dirname='data/ant_state_irl'):
    #with rllab_logdir(algo=algo, dirname='data/ant_state_irl/%s' % exp_name): # if you use multiple runs, use this line instead of above
        with tf.Session():
            algo.train() 
開發者ID:ahq1993,項目名稱:inverse_rl,代碼行數:43,代碼來源:ant_irl.py

示例12: main

# 需要導入模塊: from rllab.baselines import linear_feature_baseline [as 別名]
# 或者: from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline [as 別名]
def main(exp_name=None, fusion=False):
    env = TfEnv(CustomGymEnv('CustomAnt-v0', record_video=False, record_log=False))

    # load ~2 iterations worth of data from each forward RL experiment as demos
    experts = load_latest_experts_multiple_runs('data/ant_data_collect', n=2)

    irl_model = AIRL(env=env, expert_trajs=experts, state_only=True, fusion=fusion, max_itrs=10)

    policy = GaussianMLPPolicy(name='policy', env_spec=env.spec, hidden_sizes=(32, 32))
    algo = IRLTRPO(
        env=env,
        policy=policy,
        irl_model=irl_model,
        n_itr=1000,
        batch_size=10000,
        max_path_length=500,
        discount=0.99,
        store_paths=True,
        irl_model_wt=1.0,
        entropy_weight=0.1,
        zero_environment_reward=True,
        baseline=LinearFeatureBaseline(env_spec=env.spec),
    )
    with rllab_logdir(algo=algo, dirname='data/ant_state_irl/%s' % exp_name):
        with tf.Session():
            algo.train() 
開發者ID:justinjfu,項目名稱:inverse_rl,代碼行數:28,代碼來源:ant_irl.py

示例13: main

# 需要導入模塊: from rllab.baselines import linear_feature_baseline [as 別名]
# 或者: from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline [as 別名]
def main(exp_name, params_folder=None):
    env = TfEnv(CustomGymEnv('DisabledAnt-v0', record_video=False, record_log=False))

    irl_itr = 100  # earlier IRL iterations overfit less; 100 seems to work well.
    params_file = os.path.join(DATA_DIR, '%s/itr_%d.pkl' % (params_folder, irl_itr))
    prior_params = load_prior_params(params_file)

    irl_model = AIRL(env=env, expert_trajs=None, state_only=True)
    policy = GaussianMLPPolicy(name='policy', env_spec=env.spec, hidden_sizes=(32, 32))
    algo = IRLTRPO(
        init_irl_params=prior_params,
        env=env,
        policy=policy,
        irl_model=irl_model,
        n_itr=1000,
        batch_size=10000,
        max_path_length=500,
        discount=0.99,
        store_paths=False,
        train_irl=False,
        irl_model_wt=1.0,
        entropy_weight=0.1,
        zero_environment_reward=True,
        baseline=LinearFeatureBaseline(env_spec=env.spec),
        log_params_folder=params_folder,
        log_experiment_name=exp_name,
    )
    with rllab_logdir(algo=algo, dirname='data/ant_transfer/%s'%exp_name):
        with tf.Session():
            algo.train() 
開發者ID:justinjfu,項目名稱:inverse_rl,代碼行數:32,代碼來源:ant_transfer_disabled.py

示例14: main

# 需要導入模塊: from rllab.baselines import linear_feature_baseline [as 別名]
# 或者: from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline [as 別名]
def main():
    env = TfEnv(GymEnv('Pendulum-v0', record_video=False, record_log=False))
    
    experts = load_latest_experts('data/pendulum', n=5)

    irl_model = GAIL(env_spec=env.spec, expert_trajs=experts)
    policy = GaussianMLPPolicy(name='policy', env_spec=env.spec, hidden_sizes=(32, 32))
    algo = IRLTRPO(
        env=env,
        policy=policy,
        irl_model=irl_model,
        n_itr=200,
        batch_size=1000,
        max_path_length=100,
        discount=0.99,
        store_paths=True,
        discrim_train_itrs=50,
        irl_model_wt=1.0,
        entropy_weight=0.0, # GAIL should not use entropy unless for exploration
        zero_environment_reward=True,
        baseline=LinearFeatureBaseline(env_spec=env.spec)
    )

    with rllab_logdir(algo=algo, dirname='data/pendulum_gail'):
        with tf.Session():
            algo.train() 
開發者ID:justinjfu,項目名稱:inverse_rl,代碼行數:28,代碼來源:pendulum_gail.py

示例15: main

# 需要導入模塊: from rllab.baselines import linear_feature_baseline [as 別名]
# 或者: from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline [as 別名]
def main(exp_name=None, params_folder='data/ant_state_irl'):
    #env = TfEnv(CustomGymEnv('PointMazeLeft-v0', record_video=True, record_log=True,force_reset=True))
    env = TfEnv(CustomGymEnv('DisabledAnt-v0', record_video=False, record_log=False,force_reset=False))

    irl_itr=90# earlier IRL iterations overfit less; either 80 or 90 seems to work well. But I usually search through 60,65,70,75, .. uptil 100
    #params_file = os.path.join(DATA_DIR, '%s/itr_%d.pkl' % (params_folder, irl_itr))
    params_file = os.path.join(DATA_DIR, 'itr_%d.pkl' % (irl_itr))
    prior_params = load_prior_params(params_file)


    '''q_itr = 400  # earlier IRL iterations overfit less; 100 seems to work well.
    #params_file = os.p90ath.join(DATA_DIR, '%s/itr_%d.pkl' % (params_folder, irl_itr))
    params_file = os.path.join(DATA_DIR, 'itr_%d.pkl' % (q_itr))
    prior_params_q = load_prior_params(params_file)'''

    qvar = GaussianMLPInversePolicy(name='qvar_model', env_spec=env.spec, hidden_sizes=(32, 32))
    qvar_model = Qvar(env=env,qvar=qvar, expert_trajs=None,max_itrs=10)
    irl_model = EAIRL(env=env, expert_trajs=None, state_only=False, score_discrim=False)
    empw_model = Empowerment(env=env,max_itrs=1)
    t_empw_model = Empowerment(env=env,scope='t_efn', max_itrs=2, name='empowerment2')



    policy = GaussianMLPPolicy(name='policy', env_spec=env.spec, hidden_sizes=(32, 32))

    algo = IRLTRPO(
        init_irl_params=prior_params['irl_params'],
        init_empw_params=None,#prior_params['empw_params'],
        init_qvar_params=None,#prior_params['qvar_params'],
        init_policy_params=None,#prior_params['policy_params'],
        env=env,
        policy=policy,
		empw=empw_model,
		tempw=t_empw_model,
        qvar_model=qvar_model,
        irl_model=irl_model,
        n_itr=2000,
        batch_size=20000,
        max_path_length=500,
        discount=0.99,
        store_paths=False,
        train_irl=False,
        train_empw=False,
        train_qvar=False,
        irl_model_wt=1.0,
        entropy_weight=0.1,
        zero_environment_reward=True,
        baseline=LinearFeatureBaseline(env_spec=env.spec),
        log_params_folder=params_folder,
        log_experiment_name=exp_name,
    )

    with rllab_logdir(algo=algo, dirname='data/ant_transfer'):#%s'%exp_name):
    #with rllab_logdir(algo=algo, dirname='data/ant_transfer%s'%exp_name):
        with tf.Session():
            algo.train() 
開發者ID:ahq1993,項目名稱:inverse_rl,代碼行數:58,代碼來源:ant_transfer_disabled.py


注:本文中的rllab.baselines.linear_feature_baseline.LinearFeatureBaseline方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。