當前位置: 首頁>>代碼示例>>Python>>正文


Python resnet50.ResNet50方法代碼示例

本文整理匯總了Python中resnet50.ResNet50方法的典型用法代碼示例。如果您正苦於以下問題:Python resnet50.ResNet50方法的具體用法?Python resnet50.ResNet50怎麽用?Python resnet50.ResNet50使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在resnet50的用法示例。


在下文中一共展示了resnet50.ResNet50方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: predict

# 需要導入模塊: import resnet50 [as 別名]
# 或者: from resnet50 import ResNet50 [as 別名]
def predict(filename):
        assert os.path.isfile(filename) and 'cannot find file'
        model = ResNet50(weights='imagenet')

        img = image.load_img(filename, target_size=(224, 224))
        x = image.img_to_array(img)
        x = np.expand_dims(x, axis=0)
        x = preprocess_input(x)

        preds = decode_predictions(model.predict(x))
        if len(preds) == 0:
            return None
        return preds[0][0][1]


##################################
# main
################################## 
開發者ID:thoschm,項目名稱:START-Summit-2017-Blockchain-Machine-Learning-Workshop,代碼行數:20,代碼來源:classify.py

示例2: predict

# 需要導入模塊: import resnet50 [as 別名]
# 或者: from resnet50 import ResNet50 [as 別名]
def predict(filename):
        assert os.path.isfile(filename) and 'cannot find file'
        model = ResNet50(weights='imagenet')

        img = image.load_img(filename, target_size=(224, 224))
        x = image.img_to_array(img)
        x = np.expand_dims(x, axis=0)
        x = preprocess_input(x)

        preds = decode_predictions(model.predict(x))
        if len(preds) == 0:
            return None
        return preds[0][0][1]


##################################
# config
################################## 
開發者ID:thoschm,項目名稱:START-Summit-2017-Blockchain-Machine-Learning-Workshop,代碼行數:20,代碼來源:user.py

示例3: predict

# 需要導入模塊: import resnet50 [as 別名]
# 或者: from resnet50 import ResNet50 [as 別名]
def predict(path, model_path, index_file_path, MainUI):
    try:
        result_string = " Detected Object : Probability \n \n"

        # Making check to load Model
        if (MainUI.resnet_model_loaded == False):
            wx.CallAfter(pub.sendMessage, "report101", message="Loading ResNet model for the first time. This may take a few minutes or less than a minute. Please wait. \nLoading.....")
            model = ResNet50(include_top=True, weights="imagenet", model_path=model_path)
            wx.CallAfter(pub.sendMessage, "report101", message="ResNet model loaded.. Picture about to be processed.. \nLoading......")
            MainUI.model_collection_resnet.append(model)  # Loading model if not loaded yet
            MainUI.resnet_model_loaded = True
        else:
            wx.CallAfter(pub.sendMessage, "report101", message="Retrieving loaded model. \nLoading........")
            model = MainUI.model_collection_resnet[0]  # Getting Model from model array if loaded before
            wx.CallAfter(pub.sendMessage, "report101", message="ResNet model loaded.. Picture about to be processed.. \nLoading......")

        # Image prediction processing
        target_image = image.load_img(path, grayscale=False, target_size=(224, 224))
        target_image = image.img_to_array(target_image, data_format="channels_last")
        target_image = np.expand_dims(target_image, axis=0)

        target_image = preprocess_input(target_image, data_format="channels_last")
        wx.CallAfter(pub.sendMessage, "report101", message="Picture is transformed for prediction. \nLoading........")
        prediction = model.predict(x=target_image, steps=1)
        wx.CallAfter(pub.sendMessage, "report101", message="Picture prediction is done. Sending in results. \nLoading......")

        # Retrieving prediction result and sending it back to the thread
        prediction_result = decode_predictions(prediction, top=10, index_file_path=index_file_path)

        for results in prediction_result:
            countdown = 0
            for result in results:
                countdown += 1
                result_string += "(" + str(countdown) + ") " + str(result[1]) + " : " + str(100 * result[2])[
                                                                                        0:4] + "% \n"

        return result_string
    except Exception as e:
        return getattr(e, "message", repr(e)) 
開發者ID:OlafenwaMoses,項目名稱:Model-Playgrounds,代碼行數:41,代碼來源:ResNet.py

示例4: finetuned_resnet

# 需要導入模塊: import resnet50 [as 別名]
# 或者: from resnet50 import ResNet50 [as 別名]
def finetuned_resnet(include_top, weights_dir):
    '''

    :param include_top: True for training, False for generating intermediate results for
                        LSTM cell
    :param weights_dir: path to load finetune_resnet.h5
    :return:
    '''
    base_model = ResNet50(include_top=False, weights='imagenet', input_shape=IMSIZE)
    for layer in base_model.layers:
        layer.trainable = False

    x = base_model.output
    x = Flatten()(x)
    x = Dense(2048, activation='relu')(x)
    x = Dropout(0.5)(x)
    x = Dense(1024, activation='relu')(x)
    x = Dropout(0.5)(x)

    if include_top:
        x = Dense(N_CLASSES, activation='softmax')(x)

    model = Model(inputs=base_model.input, outputs=x)
    if os.path.exists(weights_dir):
        model.load_weights(weights_dir, by_name=True)

    return model 
開發者ID:woodfrog,項目名稱:ActionRecognition,代碼行數:29,代碼來源:finetuned_resnet.py

示例5: main

# 需要導入模塊: import resnet50 [as 別名]
# 或者: from resnet50 import ResNet50 [as 別名]
def main():
    archs = {
        'alex': alex.Alex,
        'nin': nin.NIN,
        'resnet50': resnet50.ResNet50,
    }
    parser = argparse.ArgumentParser(
        description='Learning convnet from ILSVRC2012 dataset')
    parser.add_argument('--arch', '-a', choices=archs.keys(),
                        default='resnet50',
                        help='Convnet architecture')
    parser.add_argument('--train', default='',
                        help='Path to training image-label list file')
    parser.add_argument('--val', default='',
                        help='Path to validation image-label list file')
    parser.add_argument('--batchsize', '-B', type=int, default=32,
                        help='Learning minibatch size')
    parser.add_argument('--epoch', '-E', type=int, default=10,
                        help='Number of epochs to train')
    parser.add_argument('--frequency', '-f', type=int, default=-1,
                        help='Frequency of taking a snapshot')
    parser.add_argument('--gpu', '-g', type=int, default=-1,
                        help='GPU ID (negative value indicates CPU')
    parser.add_argument('--initmodel',
                        help='Initialize the model from given file')
    parser.add_argument('--loaderjob', '-j', type=int,
                        help='Number of parallel data loading processes')
    parser.add_argument('--mean', '-m', default='mean.npy',
                        help='Mean file (computed by compute_mean.py)')
    parser.add_argument('--noplot', dest='plot', action='store_false',
                        help='Disable PlotReport extension')
    parser.add_argument('--resume', '-r', default='',
                        help='Initialize the trainer from given file')
    parser.add_argument('--out', '-o', default='result',
                        help='Output directory')
    parser.add_argument('--root', '-R', default='.',
                        help='Root directory path of image files')
    parser.add_argument('--val_batchsize', '-b', type=int, default=250,
                        help='Validation minibatch size')
    parser.add_argument('--test', action='store_true')
    parser.add_argument('--run_training', action='store_true',
                        help='Run training')
    parser.set_defaults(test=False)
    args = parser.parse_args()

    model_cls = archs[args.arch]
    main_impl(args, model_cls)

    # TODO(hamaji): Stop writing a file to scripts.
    with open('scripts/%s_stamp' % args.arch, 'w'): pass 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:52,代碼來源:gen_resnet50.py


注:本文中的resnet50.ResNet50方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。