當前位置: 首頁>>代碼示例>>Python>>正文


Python resnet.ResNet101方法代碼示例

本文整理匯總了Python中resnet.ResNet101方法的典型用法代碼示例。如果您正苦於以下問題:Python resnet.ResNet101方法的具體用法?Python resnet.ResNet101怎麽用?Python resnet.ResNet101使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在resnet的用法示例。


在下文中一共展示了resnet.ResNet101方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: JPU_DeepLab

# 需要導入模塊: import resnet [as 別名]
# 或者: from resnet import ResNet101 [as 別名]
def JPU_DeepLab(img_height=1024, img_width=1024, nclasses=19):
    base_model = ResNet101(include_top=False,
                           input_shape=[img_height, img_width, 3],
                           weights=None)#'imagenet'
    endpoint_names = ['conv2_block3_out', 'conv3_block4_out',
                      'conv4_block23_out', 'conv5_block3_out']
    endpoints = [base_model.get_layer(x).output for x in endpoint_names]

    _, image_features = JPU(endpoints)

    x_a = ASPP(image_features)
    h_t, w_t = x_a.shape.as_list()[1:3]
    scale = (img_height / 4) // h_t, (img_width / 4) // w_t
    x_a = tf.keras.layers.UpSampling2D(
        size=scale, interpolation='bilinear')(x_a)

    x_b = base_model.get_layer('conv2_block3_out').output
    x_b = conv_block(x_b, num_filters=48, kernel_size=1)

    x = tf.keras.layers.Concatenate(axis=-1)([x_a, x_b])
    x = conv_block(x, num_filters=256, kernel_size=3)
    x = conv_block(x, num_filters=256, kernel_size=3)
    h_t, w_t = x.shape.as_list()[1:3]
    scale = img_height // h_t, img_width // w_t
    x = tf.keras.layers.UpSampling2D(size=scale, interpolation='bilinear')(x)

    x = tf.keras.layers.Conv2D(nclasses, (1, 1), name='output_layer')(x)
    model = tf.keras.Model(inputs=base_model.input, outputs=x, name='JPU')
    return model 
開發者ID:1044197988,項目名稱:TF.Keras-Commonly-used-models,代碼行數:31,代碼來源:JPU.py

示例2: model_factory

# 需要導入模塊: import resnet [as 別名]
# 或者: from resnet import ResNet101 [as 別名]
def model_factory(model_name, **params):
    model_dict = {
        'densenet121': DenseNet121,
        'densenet169': DenseNet169,
        'densenet201': DenseNet201,
        'densenet161': DenseNet161,
        'densenet-cifar': densenet_cifar,
        'dual-path-net-26': DPN26,
        'dual-path-net-92': DPN92,
        'googlenet': GoogLeNet,
        'lenet': LeNet,
        'mobilenet': MobileNet,
        'mobilenetv2': MobileNetV2,
        'pnasneta': PNASNetA,
        'pnasnetb': PNASNetB,
        'preact-resnet18': PreActResNet18,
        'preact-resnet34': PreActResNet34,
        'preact-resnet50': PreActResNet50,
        'preact-resnet101': PreActResNet101,
        'preact-resnet152': PreActResNet152,
        'resnet18': ResNet18,
        'resnet34': ResNet34,
        'resnet50': ResNet50,
        'resnet101': ResNet101,
        'resnet152': ResNet152,
        'resnext29_2x64d': ResNeXt29_2x64d,
        'resnext29_4x64d': ResNeXt29_4x64d,
        'resnext29_8x64d': ResNeXt29_8x64d,
        'resnext29_32x64d': ResNeXt29_32x4d,
        'senet18': SENet18,
        'shufflenetg2': ShuffleNetG2,
        'shufflenetg3': ShuffleNetG3,
        'shufflenetv2_0.5': ShuffleNetV2,
        'shufflenetv2_1.0': ShuffleNetV2,
        'shufflenetv2_1.5': ShuffleNetV2,
        'shufflenetv2_2.0': ShuffleNetV2,
        'vgg11': VGG,
        'vgg13': VGG,
        'vgg16': VGG,
        'vgg19': VGG,
    }

    if 'vgg' in model_name:
        return model_dict[model_name](model_name)
    elif 'shufflenetv2' in model_name:
        return model_dict[model_name](float(model_name[-3:]))
    elif model_name in model_dict.keys():
        return model_dict[model_name]()
    else:
        raise AttributeError('Model doesn\'t exist') 
開發者ID:suvojit-0x55aa,項目名稱:mixed-precision-pytorch,代碼行數:52,代碼來源:model_factory_dict.py


注:本文中的resnet.ResNet101方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。