本文整理匯總了Python中readers.YT8MAggregatedFeatureReader方法的典型用法代碼示例。如果您正苦於以下問題:Python readers.YT8MAggregatedFeatureReader方法的具體用法?Python readers.YT8MAggregatedFeatureReader怎麽用?Python readers.YT8MAggregatedFeatureReader使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類readers
的用法示例。
在下文中一共展示了readers.YT8MAggregatedFeatureReader方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def main(unused_argv):
logging.set_verbosity(tf.logging.INFO)
# convert feature_names and feature_sizes to lists of values
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
if FLAGS.frame_features:
reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
if FLAGS.output_file is "":
raise ValueError("'output_file' was not specified. "
"Unable to continue with inference.")
if FLAGS.input_data_pattern is "":
raise ValueError("'input_data_pattern' was not specified. "
"Unable to continue with inference.")
inference(reader, FLAGS.train_dir, FLAGS.input_data_pattern,
FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k)
示例2: main
# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def main(unused_argv):
logging.set_verbosity(tf.logging.INFO)
# convert feature_names and feature_sizes to lists of values
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
if FLAGS.frame_features:
reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
if FLAGS.output_dir is "":
raise ValueError("'output_dir' was not specified. "
"Unable to continue with inference.")
if FLAGS.input_data_pattern is "":
raise ValueError("'input_data_pattern' was not specified. "
"Unable to continue with inference.")
inference(reader, FLAGS.model_checkpoint_path, FLAGS.input_data_pattern,
FLAGS.output_dir, FLAGS.batch_size, FLAGS.top_k)
示例3: get_reader
# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def get_reader():
# Convert feature_names and feature_sizes to lists of values.
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
if FLAGS.frame_features:
reader = readers.YT8MFrameFeatureReader(
num_classes = FLAGS.truncated_num_classes,
decode_zlib = FLAGS.decode_zlib,
feature_names=feature_names, feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(
num_classes = FLAGS.truncated_num_classes,
decode_zlib = FLAGS.decode_zlib,
feature_names=feature_names, feature_sizes=feature_sizes)
return reader
示例4: get_reader
# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def get_reader():
# Convert feature_names and feature_sizes to lists of values.
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
if FLAGS.frame_features:
reader = readers.YT8MFrameFeatureReader(
num_classes = FLAGS.truncated_num_classes,
feature_names=feature_names, feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(
num_classes = FLAGS.truncated_num_classes,
decode_zlib = FLAGS.decode_zlib,
feature_names=feature_names, feature_sizes=feature_sizes, feature_calcs=FLAGS.c_vars, feature_remove=FLAGS.r_vars)
return reader
示例5: main
# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def main(unused_argv):
logging.set_verbosity(tf.logging.INFO)
# convert feature_names and feature_sizes to lists of values
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
if FLAGS.frame_features:
reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
if FLAGS.output_file is "":
raise ValueError("'output_file' was not specified. "
"Unable to continue with inference.")
if FLAGS.input_data_pattern is "":
raise ValueError("'input_data_pattern' was not specified. "
"Unable to continue with inference.")
inference(reader, FLAGS.checkpoint_file, FLAGS.train_dir, FLAGS.input_data_pattern,
FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k)
示例6: get_reader
# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def get_reader():
# Convert feature_names and feature_sizes to lists of values.
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
if FLAGS.frame_features:
reader = readers.YT8MFrameFeatureReader(
feature_names=feature_names, feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(
feature_names=feature_names, feature_sizes=feature_sizes)
return reader
示例7: build_model
# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def build_model(self):
"""Find the model and build the graph."""
# Convert feature_names and feature_sizes to lists of values.
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
if FLAGS.frame_features:
if FLAGS.frame_only:
reader = readers.YT8MFrameFeatureOnlyReader(
feature_names=feature_names, feature_sizes=feature_sizes)
else:
reader = readers.YT8MFrameFeatureReader(
feature_names=feature_names, feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(
feature_names=feature_names, feature_sizes=feature_sizes)
# Find the model.
model = find_class_by_name(FLAGS.model,
[labels_autoencoder])()
label_loss_fn = find_class_by_name(FLAGS.label_loss, [losses])()
optimizer_class = find_class_by_name(FLAGS.optimizer, [tf.train])
build_graph(reader=reader,
model=model,
optimizer_class=optimizer_class,
clip_gradient_norm=FLAGS.clip_gradient_norm,
train_data_pattern=FLAGS.train_data_pattern,
label_loss_fn=label_loss_fn,
base_learning_rate=FLAGS.base_learning_rate,
learning_rate_decay=FLAGS.learning_rate_decay,
learning_rate_decay_examples=FLAGS.learning_rate_decay_examples,
regularization_penalty=FLAGS.regularization_penalty,
num_readers=FLAGS.num_readers,
batch_size=FLAGS.batch_size,
num_epochs=FLAGS.num_epochs)
logging.info("%s: Built graph.", task_as_string(self.task))
return tf.train.Saver(max_to_keep=2, keep_checkpoint_every_n_hours=0.25)
示例8: main
# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def main(unused_argv):
logging.set_verbosity(tf.logging.INFO)
# convert feature_names and feature_sizes to lists of values
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
if FLAGS.frame_features:
reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
if FLAGS.output_file is "":
raise ValueError("'output_file' was not specified. "
"Unable to continue with inference.")
if FLAGS.input_data_pattern is "":
raise ValueError("'input_data_pattern' was not specified. "
"Unable to continue with inference.")
model = find_class_by_name(FLAGS.model,
[frame_level_models, video_level_models])()
transformer_fn = find_class_by_name(FLAGS.feature_transformer,
[feature_transform])
build_graph(reader,
model,
input_data_pattern=FLAGS.input_data_pattern,
batch_size=FLAGS.batch_size,
transformer_class=transformer_fn)
saver = tf.train.Saver(max_to_keep=3, keep_checkpoint_every_n_hours=10000000000)
inference(saver, FLAGS.train_dir,
FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k)
示例9: main
# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def main(unused_argv):
logging.set_verbosity(tf.logging.INFO)
if FLAGS.input_model_tgz:
if FLAGS.train_dir:
raise ValueError("You cannot supply --train_dir if supplying "
"--input_model_tgz")
# Untar.
if not os.path.exists(FLAGS.untar_model_dir):
os.makedirs(FLAGS.untar_model_dir)
tarfile.open(FLAGS.input_model_tgz).extractall(FLAGS.untar_model_dir)
FLAGS.train_dir = FLAGS.untar_model_dir
flags_dict_file = os.path.join(FLAGS.train_dir, "model_flags.json")
if not file_io.file_exists(flags_dict_file):
raise IOError("Cannot find %s. Did you run eval.py?" % flags_dict_file)
flags_dict = json.loads(file_io.FileIO(flags_dict_file, "r").read())
# convert feature_names and feature_sizes to lists of values
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
flags_dict["feature_names"], flags_dict["feature_sizes"])
if flags_dict["frame_features"]:
reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
if not FLAGS.output_file:
raise ValueError("'output_file' was not specified. "
"Unable to continue with inference.")
if not FLAGS.input_data_pattern:
raise ValueError("'input_data_pattern' was not specified. "
"Unable to continue with inference.")
inference(reader, FLAGS.train_dir, FLAGS.input_data_pattern,
FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k)
示例10: get_reader
# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def get_reader():
# Convert feature_names and feature_sizes to lists of values.
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
if FLAGS.frame_features:
reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes,
segment_labels=FLAGS.segment_labels)
else:
reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
return reader
示例11: main
# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def main(unused_argv):
logging.set_verbosity(tf.logging.INFO)
if FLAGS.input_model_tgz:
if FLAGS.train_dir:
raise ValueError("You cannot supply --train_dir if supplying "
"--input_model_tgz")
# Untar.
if not os.path.exists(FLAGS.untar_model_dir):
os.makedirs(FLAGS.untar_model_dir)
tarfile.open(FLAGS.input_model_tgz).extractall(FLAGS.untar_model_dir)
FLAGS.train_dir = FLAGS.untar_model_dir
flags_dict_file = os.path.join(FLAGS.train_dir, "model_flags.json")
if not os.path.exists(flags_dict_file):
raise IOError("Cannot find %s. Did you run eval.py?" % flags_dict_file)
flags_dict = json.loads(open(flags_dict_file).read())
# convert feature_names and feature_sizes to lists of values
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
flags_dict["feature_names"], flags_dict["feature_sizes"])
if flags_dict["frame_features"]:
reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
if FLAGS.output_file is "":
raise ValueError("'output_file' was not specified. "
"Unable to continue with inference.")
if FLAGS.input_data_pattern is "":
raise ValueError("'input_data_pattern' was not specified. "
"Unable to continue with inference.")
inference(reader, FLAGS.train_dir, FLAGS.input_data_pattern,
FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k)
示例12: get_reader
# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def get_reader():
# Convert feature_names and feature_sizes to lists of values.
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
if FLAGS.frame_features:
reader = readers.YT8MFrameFeatureReader(
feature_names=feature_names, feature_sizes=feature_sizes, distill=True)
else:
reader = readers.YT8MAggregatedFeatureReader(
feature_names=feature_names, feature_sizes=feature_sizes)
return reader
示例13: get_reader
# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def get_reader():
# Convert feature_names and feature_sizes to lists of values.
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
if FLAGS.frame_features:
reader = readers.YT8MFrameFeatureReader(
feature_names=feature_names, feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(
feature_names=feature_names, feature_sizes=feature_sizes)
return reader
示例14: main
# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def main(unused_argv):
logging.set_verbosity(tf.logging.INFO)
if FLAGS.input_model_tgz:
if FLAGS.train_dir:
raise ValueError("You cannot supply --train_dir if supplying "
"--input_model_tgz")
# Untar.
if not file_io.file_exists(FLAGS.untar_model_dir):
os.makedirs(FLAGS.untar_model_dir)
tarfile.open(FLAGS.input_model_tgz).extractall(FLAGS.untar_model_dir)
FLAGS.train_dir = FLAGS.untar_model_dir
flags_dict_file = os.path.join(FLAGS.train_dir, "model_flags.json")
if not file_io.file_exists(flags_dict_file):
raise IOError("Cannot find %s. Did you run eval.py?" % flags_dict_file)
flags_dict = json.loads(file_io.FileIO(flags_dict_file, "r").read())
# convert feature_names and feature_sizes to lists of values
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
flags_dict["feature_names"], flags_dict["feature_sizes"])
if flags_dict["frame_features"]:
reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
if FLAGS.output_file is "":
raise ValueError("'output_file' was not specified. "
"Unable to continue with inference.")
if FLAGS.input_data_pattern is "":
raise ValueError("'input_data_pattern' was not specified. "
"Unable to continue with inference.")
inference(reader, FLAGS.train_dir, FLAGS.input_data_pattern,
FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k)
示例15: get_reader
# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def get_reader():
# Convert feature_names and feature_sizes to lists of values.
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
if FLAGS.frame_features:
reader = readers.YT8MFrameFeatureReader(
feature_names=feature_names, feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(
feature_names=feature_names, feature_sizes=feature_sizes)
return reader