當前位置: 首頁>>代碼示例>>Python>>正文


Python readers.YT8MAggregatedFeatureReader方法代碼示例

本文整理匯總了Python中readers.YT8MAggregatedFeatureReader方法的典型用法代碼示例。如果您正苦於以下問題:Python readers.YT8MAggregatedFeatureReader方法的具體用法?Python readers.YT8MAggregatedFeatureReader怎麽用?Python readers.YT8MAggregatedFeatureReader使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在readers的用法示例。


在下文中一共展示了readers.YT8MAggregatedFeatureReader方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def main(unused_argv):
  logging.set_verbosity(tf.logging.INFO)

  # convert feature_names and feature_sizes to lists of values
  feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
      FLAGS.feature_names, FLAGS.feature_sizes)

  if FLAGS.frame_features:
    reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
                                            feature_sizes=feature_sizes)
  else:
    reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
                                                 feature_sizes=feature_sizes)

  if FLAGS.output_file is "":
    raise ValueError("'output_file' was not specified. "
      "Unable to continue with inference.")

  if FLAGS.input_data_pattern is "":
    raise ValueError("'input_data_pattern' was not specified. "
      "Unable to continue with inference.")

  inference(reader, FLAGS.train_dir, FLAGS.input_data_pattern,
    FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k) 
開發者ID:antoine77340,項目名稱:Youtube-8M-WILLOW,代碼行數:26,代碼來源:inference.py

示例2: main

# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def main(unused_argv):
  logging.set_verbosity(tf.logging.INFO)

  # convert feature_names and feature_sizes to lists of values
  feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
      FLAGS.feature_names, FLAGS.feature_sizes)

  if FLAGS.frame_features:
    reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
                                            feature_sizes=feature_sizes)
  else:
    reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
                                                 feature_sizes=feature_sizes)

  if FLAGS.output_dir is "":
    raise ValueError("'output_dir' was not specified. "
      "Unable to continue with inference.")

  if FLAGS.input_data_pattern is "":
    raise ValueError("'input_data_pattern' was not specified. "
      "Unable to continue with inference.")

  inference(reader, FLAGS.model_checkpoint_path, FLAGS.input_data_pattern,
      FLAGS.output_dir, FLAGS.batch_size, FLAGS.top_k) 
開發者ID:wangheda,項目名稱:youtube-8m,代碼行數:26,代碼來源:inference-pre-ensemble.py

示例3: get_reader

# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def get_reader():
  # Convert feature_names and feature_sizes to lists of values.
  feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
      FLAGS.feature_names, FLAGS.feature_sizes)

  if FLAGS.frame_features:
    reader = readers.YT8MFrameFeatureReader(
        num_classes = FLAGS.truncated_num_classes,
        decode_zlib = FLAGS.decode_zlib,
        feature_names=feature_names, feature_sizes=feature_sizes)
  else:
    reader = readers.YT8MAggregatedFeatureReader(
        num_classes = FLAGS.truncated_num_classes,
        decode_zlib = FLAGS.decode_zlib,
        feature_names=feature_names, feature_sizes=feature_sizes)

  return reader 
開發者ID:mpekalski,項目名稱:Y8M,代碼行數:19,代碼來源:train.py

示例4: get_reader

# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def get_reader():
  # Convert feature_names and feature_sizes to lists of values.
  feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
      FLAGS.feature_names, FLAGS.feature_sizes)

  if FLAGS.frame_features:
    reader = readers.YT8MFrameFeatureReader(
        num_classes = FLAGS.truncated_num_classes,
        feature_names=feature_names, feature_sizes=feature_sizes)
  else:
    reader = readers.YT8MAggregatedFeatureReader(
        num_classes = FLAGS.truncated_num_classes,
        decode_zlib = FLAGS.decode_zlib,
        feature_names=feature_names, feature_sizes=feature_sizes, feature_calcs=FLAGS.c_vars, feature_remove=FLAGS.r_vars)

  return reader 
開發者ID:mpekalski,項目名稱:Y8M,代碼行數:18,代碼來源:train.py

示例5: main

# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def main(unused_argv):
  logging.set_verbosity(tf.logging.INFO)

  # convert feature_names and feature_sizes to lists of values
  feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
      FLAGS.feature_names, FLAGS.feature_sizes)

  if FLAGS.frame_features:
    reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
                                            feature_sizes=feature_sizes)
  else:
    reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
                                                 feature_sizes=feature_sizes)

  if FLAGS.output_file is "":
    raise ValueError("'output_file' was not specified. "
      "Unable to continue with inference.")

  if FLAGS.input_data_pattern is "":
    raise ValueError("'input_data_pattern' was not specified. "
      "Unable to continue with inference.")

  inference(reader, FLAGS.checkpoint_file, FLAGS.train_dir, FLAGS.input_data_pattern,
    FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k) 
開發者ID:mpekalski,項目名稱:Y8M,代碼行數:26,代碼來源:inference.py

示例6: get_reader

# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def get_reader():
  # Convert feature_names and feature_sizes to lists of values.
  feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
      FLAGS.feature_names, FLAGS.feature_sizes)

  if FLAGS.frame_features:
    reader = readers.YT8MFrameFeatureReader(
        feature_names=feature_names, feature_sizes=feature_sizes)
  else:
    reader = readers.YT8MAggregatedFeatureReader(
        feature_names=feature_names, feature_sizes=feature_sizes)
    
  return reader 
開發者ID:antoine77340,項目名稱:Youtube-8M-WILLOW,代碼行數:15,代碼來源:train.py

示例7: build_model

# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def build_model(self):
    """Find the model and build the graph."""

    # Convert feature_names and feature_sizes to lists of values.
    feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
        FLAGS.feature_names, FLAGS.feature_sizes)

    if FLAGS.frame_features:
      if FLAGS.frame_only:
          reader = readers.YT8MFrameFeatureOnlyReader(
              feature_names=feature_names, feature_sizes=feature_sizes)
      else:
          reader = readers.YT8MFrameFeatureReader(
              feature_names=feature_names, feature_sizes=feature_sizes)
    else:
      reader = readers.YT8MAggregatedFeatureReader(
          feature_names=feature_names, feature_sizes=feature_sizes)

    # Find the model.
    model = find_class_by_name(FLAGS.model,
                               [labels_autoencoder])()
    label_loss_fn = find_class_by_name(FLAGS.label_loss, [losses])()
    optimizer_class = find_class_by_name(FLAGS.optimizer, [tf.train])

    build_graph(reader=reader,
                 model=model,
                 optimizer_class=optimizer_class,
                 clip_gradient_norm=FLAGS.clip_gradient_norm,
                 train_data_pattern=FLAGS.train_data_pattern,
                 label_loss_fn=label_loss_fn,
                 base_learning_rate=FLAGS.base_learning_rate,
                 learning_rate_decay=FLAGS.learning_rate_decay,
                 learning_rate_decay_examples=FLAGS.learning_rate_decay_examples,
                 regularization_penalty=FLAGS.regularization_penalty,
                 num_readers=FLAGS.num_readers,
                 batch_size=FLAGS.batch_size,
                 num_epochs=FLAGS.num_epochs)

    logging.info("%s: Built graph.", task_as_string(self.task))

    return tf.train.Saver(max_to_keep=2, keep_checkpoint_every_n_hours=0.25) 
開發者ID:wangheda,項目名稱:youtube-8m,代碼行數:43,代碼來源:train_autoencoder.py

示例8: main

# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def main(unused_argv):
  logging.set_verbosity(tf.logging.INFO)

  # convert feature_names and feature_sizes to lists of values
  feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
      FLAGS.feature_names, FLAGS.feature_sizes)

  if FLAGS.frame_features:
    reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
                                            feature_sizes=feature_sizes)
  else:
    reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
                                                 feature_sizes=feature_sizes)

  if FLAGS.output_file is "":
    raise ValueError("'output_file' was not specified. "
      "Unable to continue with inference.")

  if FLAGS.input_data_pattern is "":
    raise ValueError("'input_data_pattern' was not specified. "
      "Unable to continue with inference.")

  model = find_class_by_name(FLAGS.model,
                             [frame_level_models, video_level_models])()
  transformer_fn = find_class_by_name(FLAGS.feature_transformer, 
                                         [feature_transform])

  build_graph(reader,
              model,
              input_data_pattern=FLAGS.input_data_pattern,
              batch_size=FLAGS.batch_size,
              transformer_class=transformer_fn)

  saver = tf.train.Saver(max_to_keep=3, keep_checkpoint_every_n_hours=10000000000)

  inference(saver, FLAGS.train_dir,
            FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k) 
開發者ID:wangheda,項目名稱:youtube-8m,代碼行數:39,代碼來源:inference-sample-error.py

示例9: main

# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def main(unused_argv):
  logging.set_verbosity(tf.logging.INFO)
  if FLAGS.input_model_tgz:
    if FLAGS.train_dir:
      raise ValueError("You cannot supply --train_dir if supplying "
                       "--input_model_tgz")
    # Untar.
    if not os.path.exists(FLAGS.untar_model_dir):
      os.makedirs(FLAGS.untar_model_dir)
    tarfile.open(FLAGS.input_model_tgz).extractall(FLAGS.untar_model_dir)
    FLAGS.train_dir = FLAGS.untar_model_dir

  flags_dict_file = os.path.join(FLAGS.train_dir, "model_flags.json")
  if not file_io.file_exists(flags_dict_file):
    raise IOError("Cannot find %s. Did you run eval.py?" % flags_dict_file)
  flags_dict = json.loads(file_io.FileIO(flags_dict_file, "r").read())

  # convert feature_names and feature_sizes to lists of values
  feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
      flags_dict["feature_names"], flags_dict["feature_sizes"])

  if flags_dict["frame_features"]:
    reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
                                            feature_sizes=feature_sizes)
  else:
    reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
                                                 feature_sizes=feature_sizes)

  if not FLAGS.output_file:
    raise ValueError("'output_file' was not specified. "
                     "Unable to continue with inference.")

  if not FLAGS.input_data_pattern:
    raise ValueError("'input_data_pattern' was not specified. "
                     "Unable to continue with inference.")

  inference(reader, FLAGS.train_dir, FLAGS.input_data_pattern,
            FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k) 
開發者ID:google,項目名稱:youtube-8m,代碼行數:40,代碼來源:inference.py

示例10: get_reader

# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def get_reader():
  # Convert feature_names and feature_sizes to lists of values.
  feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
      FLAGS.feature_names, FLAGS.feature_sizes)

  if FLAGS.frame_features:
    reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
                                            feature_sizes=feature_sizes,
                                            segment_labels=FLAGS.segment_labels)
  else:
    reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
                                                 feature_sizes=feature_sizes)

  return reader 
開發者ID:google,項目名稱:youtube-8m,代碼行數:16,代碼來源:train.py

示例11: main

# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def main(unused_argv):
  logging.set_verbosity(tf.logging.INFO)
  if FLAGS.input_model_tgz:
    if FLAGS.train_dir:
      raise ValueError("You cannot supply --train_dir if supplying "
                       "--input_model_tgz")
    # Untar.
    if not os.path.exists(FLAGS.untar_model_dir):
      os.makedirs(FLAGS.untar_model_dir)
    tarfile.open(FLAGS.input_model_tgz).extractall(FLAGS.untar_model_dir)
    FLAGS.train_dir = FLAGS.untar_model_dir

  flags_dict_file = os.path.join(FLAGS.train_dir, "model_flags.json")
  if not os.path.exists(flags_dict_file):
    raise IOError("Cannot find %s. Did you run eval.py?" % flags_dict_file)
  flags_dict = json.loads(open(flags_dict_file).read())

  # convert feature_names and feature_sizes to lists of values
  feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
      flags_dict["feature_names"], flags_dict["feature_sizes"])

  if flags_dict["frame_features"]:
    reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
                                            feature_sizes=feature_sizes)
  else:
    reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
                                                 feature_sizes=feature_sizes)

  if FLAGS.output_file is "":
    raise ValueError("'output_file' was not specified. "
      "Unable to continue with inference.")

  if FLAGS.input_data_pattern is "":
    raise ValueError("'input_data_pattern' was not specified. "
      "Unable to continue with inference.")

  inference(reader, FLAGS.train_dir, FLAGS.input_data_pattern,
    FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k) 
開發者ID:miha-skalic,項目名稱:youtube8mchallenge,代碼行數:40,代碼來源:inference_gpu.py

示例12: get_reader

# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def get_reader():
  # Convert feature_names and feature_sizes to lists of values.
  feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
      FLAGS.feature_names, FLAGS.feature_sizes)

  if FLAGS.frame_features:
    reader = readers.YT8MFrameFeatureReader(
        feature_names=feature_names, feature_sizes=feature_sizes, distill=True)
  else:
    reader = readers.YT8MAggregatedFeatureReader(
        feature_names=feature_names, feature_sizes=feature_sizes)

  return reader 
開發者ID:miha-skalic,項目名稱:youtube8mchallenge,代碼行數:15,代碼來源:train_distill.py

示例13: get_reader

# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def get_reader():
  # Convert feature_names and feature_sizes to lists of values.
  feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
      FLAGS.feature_names, FLAGS.feature_sizes)

  if FLAGS.frame_features:
    reader = readers.YT8MFrameFeatureReader(
        feature_names=feature_names, feature_sizes=feature_sizes)
  else:
    reader = readers.YT8MAggregatedFeatureReader(
        feature_names=feature_names, feature_sizes=feature_sizes)

  return reader 
開發者ID:miha-skalic,項目名稱:youtube8mchallenge,代碼行數:15,代碼來源:train.py

示例14: main

# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def main(unused_argv):
    logging.set_verbosity(tf.logging.INFO)
    if FLAGS.input_model_tgz:
        if FLAGS.train_dir:
            raise ValueError("You cannot supply --train_dir if supplying "
                             "--input_model_tgz")
        # Untar.
        if not file_io.file_exists(FLAGS.untar_model_dir):
            os.makedirs(FLAGS.untar_model_dir)
        tarfile.open(FLAGS.input_model_tgz).extractall(FLAGS.untar_model_dir)
        FLAGS.train_dir = FLAGS.untar_model_dir

    flags_dict_file = os.path.join(FLAGS.train_dir, "model_flags.json")
    if not file_io.file_exists(flags_dict_file):
        raise IOError("Cannot find %s. Did you run eval.py?" % flags_dict_file)
    flags_dict = json.loads(file_io.FileIO(flags_dict_file, "r").read())

    # convert feature_names and feature_sizes to lists of values
    feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
        flags_dict["feature_names"], flags_dict["feature_sizes"])

    if flags_dict["frame_features"]:
        reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
                                                feature_sizes=feature_sizes)
    else:
        reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
                                                     feature_sizes=feature_sizes)

    if FLAGS.output_file is "":
        raise ValueError("'output_file' was not specified. "
                         "Unable to continue with inference.")

    if FLAGS.input_data_pattern is "":
        raise ValueError("'input_data_pattern' was not specified. "
                         "Unable to continue with inference.")

    inference(reader, FLAGS.train_dir, FLAGS.input_data_pattern,
              FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k) 
開發者ID:pomonam,項目名稱:AttentionCluster,代碼行數:40,代碼來源:inference.py

示例15: get_reader

# 需要導入模塊: import readers [as 別名]
# 或者: from readers import YT8MAggregatedFeatureReader [as 別名]
def get_reader():
    # Convert feature_names and feature_sizes to lists of values.
    feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
        FLAGS.feature_names, FLAGS.feature_sizes)

    if FLAGS.frame_features:
        reader = readers.YT8MFrameFeatureReader(
            feature_names=feature_names, feature_sizes=feature_sizes)
    else:
        reader = readers.YT8MAggregatedFeatureReader(
            feature_names=feature_names, feature_sizes=feature_sizes)

    return reader 
開發者ID:pomonam,項目名稱:AttentionCluster,代碼行數:15,代碼來源:train.py


注:本文中的readers.YT8MAggregatedFeatureReader方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。