當前位置: 首頁>>代碼示例>>Python>>正文


Python rdMolDescriptors.GetMorganFingerprintAsBitVect方法代碼示例

本文整理匯總了Python中rdkit.Chem.rdMolDescriptors.GetMorganFingerprintAsBitVect方法的典型用法代碼示例。如果您正苦於以下問題:Python rdMolDescriptors.GetMorganFingerprintAsBitVect方法的具體用法?Python rdMolDescriptors.GetMorganFingerprintAsBitVect怎麽用?Python rdMolDescriptors.GetMorganFingerprintAsBitVect使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在rdkit.Chem.rdMolDescriptors的用法示例。


在下文中一共展示了rdMolDescriptors.GetMorganFingerprintAsBitVect方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: reward_target_molecule_similarity

# 需要導入模塊: from rdkit.Chem import rdMolDescriptors [as 別名]
# 或者: from rdkit.Chem.rdMolDescriptors import GetMorganFingerprintAsBitVect [as 別名]
def reward_target_molecule_similarity(mol, target, radius=2, nBits=2048,
                                      useChirality=True):
    """
    Reward for a target molecule similarity, based on tanimoto similarity
    between the ECFP fingerprints of the x molecule and target molecule
    :param mol: rdkit mol object
    :param target: rdkit mol object
    :return: float, [0.0, 1.0]
    """
    x = rdMolDescriptors.GetMorganFingerprintAsBitVect(mol, radius=radius,
                                                        nBits=nBits,
                                                        useChirality=useChirality)
    target = rdMolDescriptors.GetMorganFingerprintAsBitVect(target,
                                                            radius=radius,
                                                        nBits=nBits,
                                                        useChirality=useChirality)
    return DataStructs.TanimotoSimilarity(x, target)


### TERMINAL VALUE REWARDS ### 
開發者ID:bowenliu16,項目名稱:rl_graph_generation,代碼行數:22,代碼來源:molecule.py

示例2: __init__

# 需要導入模塊: from rdkit.Chem import rdMolDescriptors [as 別名]
# 或者: from rdkit.Chem.rdMolDescriptors import GetMorganFingerprintAsBitVect [as 別名]
def __init__(self, mol, radius, nBits=2048, useChirality=False, useBondTypes=True, 
    useFeatures=False, smiles=None):
    self.fingerprint = rdMolDescriptors.GetMorganFingerprintAsBitVect(
      mol, radius, nBits=nBits, useChirality=useChirality, useBondTypes=useBondTypes,
      useFeatures=useFeatures)
    self.fingerprint_array = np.asarray(self.fingerprint)
    self.smiles = smiles 
開發者ID:simonfqy,項目名稱:PADME,代碼行數:9,代碼來源:fingerprints.py

示例3: _featurize

# 需要導入模塊: from rdkit.Chem import rdMolDescriptors [as 別名]
# 或者: from rdkit.Chem.rdMolDescriptors import GetMorganFingerprintAsBitVect [as 別名]
def _featurize(self, mol):
    """
    Calculate circular fingerprint.

    Parameters
    ----------
    mol : RDKit Mol
        Molecule.
    """
    from rdkit import Chem
    from rdkit.Chem import rdMolDescriptors
    if self.sparse:
      info = {}
      fp = rdMolDescriptors.GetMorganFingerprint(
          mol,
          self.radius,
          useChirality=self.chiral,
          useBondTypes=self.bonds,
          useFeatures=self.features,
          bitInfo=info)
      fp = fp.GetNonzeroElements()  # convert to a dict

      # generate SMILES for fragments
      if self.smiles:
        fp_smiles = {}
        for fragment_id, count in fp.items():
          root, radius = info[fragment_id][0]
          env = Chem.FindAtomEnvironmentOfRadiusN(mol, radius, root)
          frag = Chem.PathToSubmol(mol, env)
          smiles = Chem.MolToSmiles(frag)
          fp_smiles[fragment_id] = {'smiles': smiles, 'count': count}
        fp = fp_smiles
    else:
      fp = rdMolDescriptors.GetMorganFingerprintAsBitVect(
          mol,
          self.radius,
          nBits=self.size,
          useChirality=self.chiral,
          useBondTypes=self.bonds,
          useFeatures=self.features)
    return fp 
開發者ID:deepchem,項目名稱:deepchem,代碼行數:43,代碼來源:fingerprints.py

示例4: get_highest_similarity

# 需要導入模塊: from rdkit.Chem import rdMolDescriptors [as 別名]
# 或者: from rdkit.Chem.rdMolDescriptors import GetMorganFingerprintAsBitVect [as 別名]
def get_highest_similarity(input_file, output_file, comparison_file='../full_toxcast/restructured.csv',
  top_compounds_only=True, num_compounds=1500):
  df_avg = pd.read_csv(input_file, header=0, index_col=False)
  if top_compounds_only:
    df_avg = df_avg.head(num_compounds)
  smiles_list = df_avg['smiles']
  avg_scores = df_avg['avg_score']
  # default_mol = Chem.MolFromSmiles('CCCC')
  # default_fp = rdMolDescriptors.GetMorganFingerprintAsBitVect(default_mol, 2, nBits=1024)
  # mol2 = Chem.MolFromSmiles('CCCC')
  # fp2 = rdMolDescriptors.GetMorganFingerprintAsBitVect(mol2, 2, nBits=1024)
  # sim = DataStructs.FingerprintSimilarity(default_fp, fp2)
  df_comparison = pd.read_csv(comparison_file, header=0, index_col=False)
  #df_comparison = df_comparison.head(100)
  comparison_smiles_list = df_comparison['smiles']
  comparison_fp_list = []
  similarity_list = []
  for c_smiles in comparison_smiles_list:
    comp_mol = Chem.MolFromSmiles(c_smiles)
    #comp_fp = rdMolDescriptors.GetMorganFingerprintAsBitVect(comp_mol, 2, nBits=1024)
    comp_fp = FingerprintMols.FingerprintMol(comp_mol)
    comparison_fp_list.append(comp_fp)

  for i, smiles in enumerate(smiles_list):
    mol_to_test = Chem.MolFromSmiles(smiles)
    #fp_to_test = rdMolDescriptors.GetMorganFingerprintAsBitVect(mol_to_test, 2, nBits=1024)
    fp_to_test = FingerprintMols.FingerprintMol(mol_to_test)
    similarity_list.append(get_highest_similarity_for_mol(fp_to_test, comparison_fp_list))
    if i%500 == 0:
      print(i)

  with open(output_file, 'w', newline='') as csvfile:
    fieldnames = ['smiles', 'avg_score', 'max_similarity']
    writer = csv.DictWriter(csvfile, fieldnames = fieldnames)
    writer.writeheader()
    for i, smiles in enumerate(smiles_list):
      out_line = {'smiles': smiles, 'avg_score': avg_scores[i], 
        'max_similarity': similarity_list[i]}
      writer.writerow(out_line) 
開發者ID:simonfqy,項目名稱:PADME,代碼行數:41,代碼來源:preprocess.py

示例5: get_input_features

# 需要導入模塊: from rdkit.Chem import rdMolDescriptors [as 別名]
# 或者: from rdkit.Chem.rdMolDescriptors import GetMorganFingerprintAsBitVect [as 別名]
def get_input_features(self, mol):
        try:
            fp = rdMolDescriptors.GetMorganFingerprintAsBitVect(mol,
                                                                self.radius)
        except Exception as e:
            logger = getLogger(__name__)
            logger.debug('exception caught at ECFPPreprocessor:', e)
            # Extracting feature failed
            raise MolFeatureExtractionError
        # TODO(Nakago): Test it.
        return numpy.asarray(fp, numpy.float32) 
開發者ID:chainer,項目名稱:chainer-chemistry,代碼行數:13,代碼來源:ecfp_preprocessor.py

示例6: __represent

# 需要導入模塊: from rdkit.Chem import rdMolDescriptors [as 別名]
# 或者: from rdkit.Chem.rdMolDescriptors import GetMorganFingerprintAsBitVect [as 別名]
def __represent(self, smiles):
        # The descriptor must be a binary Morgan fingerprint with radius 2 and 1024 bits.

        mol = Chem.MolFromSmiles(smiles.strip())
        if mol is None:
            msg = '%s is not a valid SMILES representation'%smiles
            raise ValueError(msg)
        else:
            return np.array(GetMorganFingerprintAsBitVect(mol, radius=2, nBits=1024)) 
開發者ID:hachmannlab,項目名稱:chemml,代碼行數:11,代碼來源:organic_lorentz_lorenz.py

示例7: featurize

# 需要導入模塊: from rdkit.Chem import rdMolDescriptors [as 別名]
# 或者: from rdkit.Chem.rdMolDescriptors import GetMorganFingerprintAsBitVect [as 別名]
def featurize(self, x):
        if self.input_type == 'smiles':
            x_ = x
            x = Chem.MolFromSmiles(x)
            if x is None:
                raise ValueError('can not convert Mol from SMILES %s' % x_)
        if self.input_type == 'any':
            if not isinstance(x, Chem.rdchem.Mol):
                x_ = x
                x = Chem.MolFromSmiles(x)
                if x is None:
                    raise ValueError('can not convert Mol from SMILES %s' % x_)
        return list(rdMol.GetMorganFingerprintAsBitVect(x, self.radius, nBits=self.n_bits, useFeatures=True)) 
開發者ID:yoshida-lab,項目名稱:XenonPy,代碼行數:15,代碼來源:fingerprint.py

示例8: split

# 需要導入模塊: from rdkit.Chem import rdMolDescriptors [as 別名]
# 或者: from rdkit.Chem.rdMolDescriptors import GetMorganFingerprintAsBitVect [as 別名]
def split(self,
            dataset,
            seed=None,
            frac_train=.8,
            frac_valid=.1,
            frac_test=.1,
            log_every_n=None):
    """
    Splits internal compounds randomly into train/validation/test.
    """
    np.testing.assert_almost_equal(frac_train + frac_valid + frac_test, 1.)
    if seed is None:
      seed = random.randint(0, 2**30)
    np.random.seed(seed)

    num_datapoints = len(dataset)

    train_cutoff = int(frac_train * num_datapoints)
    valid_cutoff = int((frac_train + frac_valid) * num_datapoints)

    num_train = train_cutoff
    num_valid = valid_cutoff - train_cutoff
    num_test = num_datapoints - valid_cutoff

    all_mols = []
    for ind, smiles in enumerate(dataset.ids):
      all_mols.append(Chem.MolFromSmiles(smiles))

    fps = [AllChem.GetMorganFingerprintAsBitVect(x, 2, 1024) for x in all_mols]

    def distance(i, j):
      return 1 - DataStructs.DiceSimilarity(fps[i], fps[j])

    picker = MaxMinPicker()
    testIndices = picker.LazyPick(
        distFunc=distance,
        poolSize=num_datapoints,
        pickSize=num_test,
        seed=seed)

    validTestIndices = picker.LazyPick(
        distFunc=distance,
        poolSize=num_datapoints,
        pickSize=num_valid + num_test,
        firstPicks=testIndices,
        seed=seed)

    allSet = set(range(num_datapoints))
    testSet = set(testIndices)
    validSet = set(validTestIndices) - testSet

    trainSet = allSet - testSet - validSet

    assert len(testSet & validSet) == 0
    assert len(testSet & trainSet) == 0
    assert len(validSet & trainSet) == 0
    assert (validSet | trainSet | testSet) == allSet

    return sorted(list(trainSet)), sorted(list(validSet)), sorted(list(testSet)) 
開發者ID:simonfqy,項目名稱:PADME,代碼行數:61,代碼來源:splitters.py


注:本文中的rdkit.Chem.rdMolDescriptors.GetMorganFingerprintAsBitVect方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。