本文整理匯總了Python中rdkit.Chem.GetAdjacencyMatrix方法的典型用法代碼示例。如果您正苦於以下問題:Python Chem.GetAdjacencyMatrix方法的具體用法?Python Chem.GetAdjacencyMatrix怎麽用?Python Chem.GetAdjacencyMatrix使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類rdkit.Chem
的用法示例。
在下文中一共展示了Chem.GetAdjacencyMatrix方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: CalculateSchiultz
# 需要導入模塊: from rdkit import Chem [as 別名]
# 或者: from rdkit.Chem import GetAdjacencyMatrix [as 別名]
def CalculateSchiultz(mol):
"""
#################################################################
Calculation of Schiultz number
---->Tsch(log value)
Usage:
result=CalculateSchiultz(mol)
Input: mol is a molecule object
Output: result is a numeric value
#################################################################
"""
Distance = numpy.array(Chem.GetDistanceMatrix(mol), "d")
Adjacent = numpy.array(Chem.GetAdjacencyMatrix(mol), "d")
VertexDegree = sum(Adjacent)
return sum(scipy.dot((Distance + Adjacent), VertexDegree))
示例2: valences_not_too_large
# 需要導入模塊: from rdkit import Chem [as 別名]
# 或者: from rdkit.Chem import GetAdjacencyMatrix [as 別名]
def valences_not_too_large(rdkit_mol):
valence_dict = {5: 3, 6: 4, 7: 3, 8: 2, 9: 1, 14: 4, 15: 5, 16: 6, 17: 1, 34: 2, 35: 1, 53: 1}
atomicNumList = [a.GetAtomicNum() for a in rdkit_mol.GetAtoms()]
valences = [valence_dict[atomic_num] for atomic_num in atomicNumList]
BO = Chem.GetAdjacencyMatrix(rdkit_mol, useBO=True)
number_of_bonds_list = BO.sum(axis=1)
for valence, number_of_bonds in zip(valences, number_of_bonds_list):
if number_of_bonds > valence:
return False
return True
# code modified from https://github.com/haroldsultan/MCTS/blob/master/mcts.py
示例3: test_smiles_from_adjacent_matrix
# 需要導入模塊: from rdkit import Chem [as 別名]
# 或者: from rdkit.Chem import GetAdjacencyMatrix [as 別名]
def test_smiles_from_adjacent_matrix(smiles):
charged_fragments = True
quick = True
# Cut apart the smiles
mol = get_mol(smiles)
atoms = get_atoms(mol)
charge = Chem.GetFormalCharge(mol)
adjacent_matrix = Chem.GetAdjacencyMatrix(mol)
#
mol = Chem.RemoveHs(mol)
canonical_smiles = Chem.MolToSmiles(mol)
# Define new molecule template from atoms
new_mol = x2m.get_proto_mol(atoms)
# reconstruct the molecule from adjacent matrix, atoms and total charge
new_mol = x2m.AC2mol(new_mol, adjacent_matrix, atoms, charge, charged_fragments, quick)
new_mol = Chem.RemoveHs(new_mol)
new_mol_smiles = Chem.MolToSmiles(new_mol)
assert new_mol_smiles == canonical_smiles
return
示例4: CalculateBalaban
# 需要導入模塊: from rdkit import Chem [as 別名]
# 或者: from rdkit.Chem import GetAdjacencyMatrix [as 別名]
def CalculateBalaban(mol):
"""
#################################################################
Calculation of Balaban index in a molecule
---->J
Usage:
result=CalculateBalaban(mol)
Input: mol is a molecule object
Output: result is a numeric value
#################################################################
"""
adjMat = Chem.GetAdjacencyMatrix(mol)
Distance = Chem.GetDistanceMatrix(mol)
Nbond = mol.GetNumBonds()
Natom = mol.GetNumAtoms()
S = numpy.sum(Distance, axis=1)
mu = Nbond - Natom + 1
sumk = 0.0
for i in range(len(Distance)):
si = S[i]
for j in range(i, len(Distance)):
if adjMat[i, j] == 1:
sumk += 1.0 / numpy.sqrt(si * S[j])
if mu + 1 != 0:
J = float(Nbond) / float(mu + 1) * sumk
else:
J = 0
return J
示例5: create_adjacency
# 需要導入模塊: from rdkit import Chem [as 別名]
# 或者: from rdkit.Chem import GetAdjacencyMatrix [as 別名]
def create_adjacency(mol):
adjacency = Chem.GetAdjacencyMatrix(mol)
return np.array(adjacency)
示例6: create_datasets
# 需要導入模塊: from rdkit import Chem [as 別名]
# 或者: from rdkit.Chem import GetAdjacencyMatrix [as 別名]
def create_datasets(task, dataset, radius, device):
dir_dataset = '../dataset/' + task + '/' + dataset + '/'
"""Initialize x_dict, in which each key is a symbol type
(e.g., atom and chemical bond) and each value is its index.
"""
atom_dict = defaultdict(lambda: len(atom_dict))
bond_dict = defaultdict(lambda: len(bond_dict))
fingerprint_dict = defaultdict(lambda: len(fingerprint_dict))
edge_dict = defaultdict(lambda: len(edge_dict))
def create_dataset(filename):
print(filename)
"""Load a dataset."""
with open(dir_dataset + filename, 'r') as f:
smiles_property = f.readline().strip().split()
data_original = f.read().strip().split('\n')
"""Exclude the data contains '.' in its smiles."""
data_original = [data for data in data_original
if '.' not in data.split()[0]]
dataset = []
for data in data_original:
smiles, property = data.strip().split()
"""Create each data with the above defined functions."""
mol = Chem.AddHs(Chem.MolFromSmiles(smiles))
atoms = create_atoms(mol, atom_dict)
molecular_size = len(atoms)
i_jbond_dict = create_ijbonddict(mol, bond_dict)
fingerprints = extract_fingerprints(radius, atoms, i_jbond_dict,
fingerprint_dict, edge_dict)
adjacency = Chem.GetAdjacencyMatrix(mol)
"""Transform the above each data of numpy
to pytorch tensor on a device (i.e., CPU or GPU).
"""
fingerprints = torch.LongTensor(fingerprints).to(device)
adjacency = torch.FloatTensor(adjacency).to(device)
if task == 'classification':
property = torch.LongTensor([int(property)]).to(device)
if task == 'regression':
property = torch.FloatTensor([[float(property)]]).to(device)
dataset.append((fingerprints, adjacency, molecular_size, property))
return dataset
dataset_train = create_dataset('data_train.txt')
dataset_train, dataset_dev = split_dataset(dataset_train, 0.9)
dataset_test = create_dataset('data_test.txt')
N_fingerprints = len(fingerprint_dict)
return dataset_train, dataset_dev, dataset_test, N_fingerprints
示例7: _GetBurdenMatrix
# 需要導入模塊: from rdkit import Chem [as 別名]
# 或者: from rdkit.Chem import GetAdjacencyMatrix [as 別名]
def _GetBurdenMatrix(mol, propertylabel="m"):
"""
#################################################################
*Internal used only**
Calculate Burden matrix and their eigenvalues.
#################################################################
"""
mol = Chem.AddHs(mol)
Natom = mol.GetNumAtoms()
AdMatrix = Chem.GetAdjacencyMatrix(mol)
bondindex = numpy.argwhere(AdMatrix)
AdMatrix1 = numpy.array(AdMatrix, dtype=numpy.float32)
# The diagonal elements of B, Bii, are either given by
# the carbon normalized atomic mass,
# van der Waals volume, Sanderson electronegativity,
# and polarizability of atom i.
for i in range(Natom):
atom = mol.GetAtomWithIdx(i)
temp = GetRelativeAtomicProperty(
element=atom.GetSymbol(), propertyname=propertylabel
)
AdMatrix1[i, i] = round(temp, 3)
# The element of B connecting atoms i and j, Bij,
# is equal to the square root of the bond
# order between atoms i and j.
for i in bondindex:
bond = mol.GetBondBetweenAtoms(int(i[0]), int(i[1]))
if bond.GetBondType().name == "SINGLE":
AdMatrix1[i[0], i[1]] = round(numpy.sqrt(1), 3)
if bond.GetBondType().name == "DOUBLE":
AdMatrix1[i[0], i[1]] = round(numpy.sqrt(2), 3)
if bond.GetBondType().name == "TRIPLE":
AdMatrix1[i[0], i[1]] = round(numpy.sqrt(3), 3)
if bond.GetBondType().name == "AROMATIC":
AdMatrix1[i[0], i[1]] = round(numpy.sqrt(1.5), 3)
##All other elements of B (corresponding non bonded
# atom pairs) are set to 0.001
bondnonindex = numpy.argwhere(AdMatrix == 0)
for i in bondnonindex:
if i[0] != i[1]:
AdMatrix1[i[0], i[1]] = 0.001
return numpy.real(numpy.linalg.eigvals(AdMatrix1))
示例8: read_graph
# 需要導入模塊: from rdkit import Chem [as 別名]
# 或者: from rdkit.Chem import GetAdjacencyMatrix [as 別名]
def read_graph(source_path,MAX_size):
Vertex = []
Adj = [] # Normalized adjacency matrix
mycount=1
PAD=0
mydict={}
max_size=0
with tf.gfile.GFile(source_path, mode="r") as source_file:
source = source_file.readline().strip()
counter = 0
while source:
mol = Chem.MolFromSmiles(source)
atom_list = []
for a in mol.GetAtoms():
m = a.GetSymbol()
if m not in mydict:
mydict[m]=mycount
mycount = mycount +1
atom_list.append(mydict[m])
if len(atom_list) > max_size:
max_size = len(atom_list)
if len(atom_list) < MAX_size:
pad = [PAD] * (MAX_size - len(atom_list))
atom_list = atom_list+pad
vertex = np.array(atom_list, np.int32)
Vertex.append(vertex)
adja_mat = Chem.GetAdjacencyMatrix(mol)
adj_temp = []
for adja in adja_mat:
if len(adja) < MAX_size:
pad = [PAD]*(MAX_size - len(adja))
adja = np.array(list(adja)+pad,np.int32)
adj_temp.append(adja)
cur_len = len(adj_temp)
for i in range(MAX_size - cur_len):
adja =np.array( [PAD]*MAX_size,np.int32)
adj_temp.append(adja)
adj_temp = adj_temp + np.eye(MAX_size) # A_hat = A + I
Adj.append(adj_temp)
source = source_file.readline().strip()
return Vertex,Adj,max_size
################ Reading initial states and weigths