本文整理匯總了Python中rdkit.Chem.Descriptors.MolLogP方法的典型用法代碼示例。如果您正苦於以下問題:Python Descriptors.MolLogP方法的具體用法?Python Descriptors.MolLogP怎麽用?Python Descriptors.MolLogP使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類rdkit.Chem.Descriptors
的用法示例。
在下文中一共展示了Descriptors.MolLogP方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: filter_smiles
# 需要導入模塊: from rdkit.Chem import Descriptors [as 別名]
# 或者: from rdkit.Chem.Descriptors import MolLogP [as 別名]
def filter_smiles(sml):
try:
m = Chem.MolFromSmiles(sml)
logp = Descriptors.MolLogP(m)
mol_weight = Descriptors.MolWt(m)
num_heavy_atoms = Descriptors.HeavyAtomCount(m)
atom_num_list = [atom.GetAtomicNum() for atom in m.GetAtoms()]
is_organic = set(atom_num_list) <= ORGANIC_ATOM_SET
if ((logp > -5) & (logp < 7) &
(mol_weight > 12) & (mol_weight < 600) &
(num_heavy_atoms > 3) & (num_heavy_atoms < 50) &
is_organic ):
return Chem.MolToSmiles(m)
else:
return float('nan')
except:
return float('nan')
示例2: evaluate
# 需要導入模塊: from rdkit.Chem import Descriptors [as 別名]
# 或者: from rdkit.Chem.Descriptors import MolLogP [as 別名]
def evaluate(self, lst_in):
"""
Evaluate structure alerts on a list of SMILES
:param lst_in: input list of [SMILES, Name]
:return: list of alerts matched or "OK"
"""
smiles, name = lst_in
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return [smiles, name, 'INVALID', -999, -999, -999, -999, -999]
desc_list = [MolWt(mol), MolLogP(mol), NumHDonors(mol), NumHAcceptors(mol), TPSA(mol),
CalcNumRotatableBonds(mol)]
for row in self.rule_list:
patt, max_val, desc = row
if len(mol.GetSubstructMatches(patt)) > max_val:
return [smiles, name] + [desc + " > %d" % (max_val)] + desc_list
return [smiles, name] + ["OK"] + desc_list
示例3: penalized_logp
# 需要導入模塊: from rdkit.Chem import Descriptors [as 別名]
# 或者: from rdkit.Chem.Descriptors import MolLogP [as 別名]
def penalized_logp(s):
if s is None: return -100.0
mol = Chem.MolFromSmiles(s)
if mol is None: return -100.0
logP_mean = 2.4570953396190123
logP_std = 1.434324401111988
SA_mean = -3.0525811293166134
SA_std = 0.8335207024513095
cycle_mean = -0.0485696876403053
cycle_std = 0.2860212110245455
log_p = Descriptors.MolLogP(mol)
SA = -sascorer.calculateScore(mol)
# cycle score
cycle_list = nx.cycle_basis(nx.Graph(Chem.rdmolops.GetAdjacencyMatrix(mol)))
if len(cycle_list) == 0:
cycle_length = 0
else:
cycle_length = max([len(j) for j in cycle_list])
if cycle_length <= 6:
cycle_length = 0
else:
cycle_length = cycle_length - 6
cycle_score = -cycle_length
normalized_log_p = (log_p - logP_mean) / logP_std
normalized_SA = (SA - SA_mean) / SA_std
normalized_cycle = (cycle_score - cycle_mean) / cycle_std
return normalized_log_p + normalized_SA + normalized_cycle
示例4: reward_target_logp
# 需要導入模塊: from rdkit.Chem import Descriptors [as 別名]
# 或者: from rdkit.Chem.Descriptors import MolLogP [as 別名]
def reward_target_logp(mol, target,ratio=0.5,max=4):
"""
Reward for a target log p
:param mol: rdkit mol object
:param target: float
:return: float (-inf, max]
"""
x = MolLogP(mol)
reward = -1 * np.abs((x - target)/ratio) + max
return reward
示例5: get_mol_props
# 需要導入模塊: from rdkit.Chem import Descriptors [as 別名]
# 或者: from rdkit.Chem.Descriptors import MolLogP [as 別名]
def get_mol_props(mol: AllChem.Mol):
"""
Get the properties of a molecule.
"""
logP = Descriptors.MolLogP(mol)
tpsa = rdMolDescriptors.CalcTPSA(mol)
alpha = rdMolDescriptors.CalcHallKierAlpha(mol)
MR = Descriptors.MolMR(mol)
asa = rdMolDescriptors.CalcLabuteASA(mol)
return [logP, tpsa, alpha, MR, asa]
示例6: get_descriptors
# 需要導入模塊: from rdkit.Chem import Descriptors [as 別名]
# 或者: from rdkit.Chem.Descriptors import MolLogP [as 別名]
def get_descriptors(sml):
try:
m = Chem.MolFromSmiles(sml)
descriptor_list = []
descriptor_list.append(Descriptors.MolLogP(m))
descriptor_list.append(Descriptors.MolMR(m)) #ok
descriptor_list.append(Descriptors.BalabanJ(m))
descriptor_list.append(Descriptors.NumHAcceptors(m)) #ok
descriptor_list.append(Descriptors.NumHDonors(m)) #ok
descriptor_list.append(Descriptors.NumValenceElectrons(m))
descriptor_list.append(Descriptors.TPSA(m)) # nice
return descriptor_list
except:
return [np.float("nan")] * 7
示例7: create_feature_df
# 需要導入模塊: from rdkit.Chem import Descriptors [as 別名]
# 或者: from rdkit.Chem.Descriptors import MolLogP [as 別名]
def create_feature_df(smiles_df):
temp = list(zip(*smiles_df['canonical_smiles'].map(get_descriptors)))
columns = ["MolLogP", "MolMR", "BalabanJ", "NumHAcceptors", "NumHDonors", "NumValenceElectrons", "TPSA"]
df = pd.DataFrame(columns=columns)
for i, c in enumerate(columns):
df.loc[:, c] = temp[i]
df = (df - df.mean(axis=0, numeric_only=True)) / df.std(axis=0, numeric_only=True)
df = smiles_df.join(df)
return df
示例8: logP_score
# 需要導入模塊: from rdkit.Chem import Descriptors [as 別名]
# 或者: from rdkit.Chem.Descriptors import MolLogP [as 別名]
def logP_score(m):
try:
logp = Descriptors.MolLogP(m)
except:
print (m, Chem.MolToSmiles(m))
sys.exit('failed to make a molecule')
SA_score = -sascorer.calculateScore(m)
#cycle_list = nx.cycle_basis(nx.Graph(rdmolops.GetAdjacencyMatrix(m)))
cycle_list = m.GetRingInfo().AtomRings() #remove networkx dependence
if len(cycle_list) == 0:
cycle_length = 0
else:
cycle_length = max([ len(j) for j in cycle_list ])
if cycle_length <= 6:
cycle_length = 0
else:
cycle_length = cycle_length - 6
cycle_score = -cycle_length
#print cycle_score
#print SA_score
#print logp
SA_score_norm=(SA_score-SA_mean)/SA_std
logp_norm=(logp-logP_mean)/logP_std
cycle_score_norm=(cycle_score-cycle_mean)/cycle_std
score_one = SA_score_norm + logp_norm + cycle_score_norm
return score_one
示例9: logP
# 需要導入模塊: from rdkit.Chem import Descriptors [as 別名]
# 或者: from rdkit.Chem.Descriptors import MolLogP [as 別名]
def logP(mol: Mol) -> float:
return Descriptors.MolLogP(mol)
示例10: logP
# 需要導入模塊: from rdkit.Chem import Descriptors [as 別名]
# 或者: from rdkit.Chem.Descriptors import MolLogP [as 別名]
def logP(smile, train_smiles=None):
try:
low_logp = -2.12178879609
high_logp = 6.0429063424
logp = Crippen.MolLogP(Chem.MolFromSmiles(smile))
val = remap(logp, low_logp, high_logp)
val = np.clip(val, 0.0, 1.0)
return val
except ValueError:
return 0.0
#====== druglikeliness
示例11: properties
# 需要導入模塊: from rdkit.Chem import Descriptors [as 別名]
# 或者: from rdkit.Chem.Descriptors import MolLogP [as 別名]
def properties(mol):
"""
Calculates the properties that are required to calculate the QED descriptor.
"""
matches = []
if mol is None:
raise WrongArgument("properties(mol)", "mol argument is \'None\'")
x = [0] * 9
# MW
x[0] = Descriptors.MolWt(mol)
# ALOGP
x[1] = Descriptors.MolLogP(mol)
for hba in Acceptors: # HBA
if mol.HasSubstructMatch(hba):
matches = mol.GetSubstructMatches(hba)
x[2] += len(matches)
x[3] = Descriptors.NumHDonors(
mol) # HBD
# PSA
x[4] = Descriptors.TPSA(mol)
x[5] = Descriptors.NumRotatableBonds(
mol) # ROTB
x[6] = Chem.GetSSSR(Chem.DeleteSubstructs(
deepcopy(mol), AliphaticRings)) # AROM
for alert in StructuralAlerts: # ALERTS
if (mol.HasSubstructMatch(alert)):
x[7] += 1
ro5_failed = 0
if x[3] > 5:
ro5_failed += 1 # HBD
if x[2] > 10:
ro5_failed += 1 # HBA
if x[0] >= 500:
ro5_failed += 1
if x[1] > 5:
ro5_failed += 1
x[8] = ro5_failed
return x
示例12: reward_penalized_log_p
# 需要導入模塊: from rdkit.Chem import Descriptors [as 別名]
# 或者: from rdkit.Chem.Descriptors import MolLogP [as 別名]
def reward_penalized_log_p(mol):
"""
Reward that consists of log p penalized by SA and # long cycles,
as described in (Kusner et al. 2017). Scores are normalized based on the
statistics of 250k_rndm_zinc_drugs_clean.smi dataset
:param mol: rdkit mol object
:return: float
"""
# normalization constants, statistics from 250k_rndm_zinc_drugs_clean.smi
logP_mean = 2.4570953396190123
logP_std = 1.434324401111988
SA_mean = -3.0525811293166134
SA_std = 0.8335207024513095
cycle_mean = -0.0485696876403053
cycle_std = 0.2860212110245455
log_p = MolLogP(mol)
SA = -calculateScore(mol)
# cycle score
cycle_list = nx.cycle_basis(nx.Graph(
Chem.rdmolops.GetAdjacencyMatrix(mol)))
if len(cycle_list) == 0:
cycle_length = 0
else:
cycle_length = max([len(j) for j in cycle_list])
if cycle_length <= 6:
cycle_length = 0
else:
cycle_length = cycle_length - 6
cycle_score = -cycle_length
normalized_log_p = (log_p - logP_mean) / logP_std
normalized_SA = (SA - SA_mean) / SA_std
normalized_cycle = (cycle_score - cycle_mean) / cycle_std
return normalized_log_p + normalized_SA + normalized_cycle
# # TEST compare with junction tree paper examples from Figure 7
# assert round(reward_penalized_log_p(Chem.MolFromSmiles('ClC1=CC=C2C(C=C(C('
# 'C)=O)C(C(NC3=CC(NC('
# 'NC4=CC(C5=C('
# 'C)C=CC=C5)=CC=C4)=O)=CC=C3)=O)=C2)=C1')), 2) == 5.30
# assert round(reward_penalized_log_p(Chem.MolFromSmiles('CC(NC1=CC(C2=CC=CC('
# 'NC(NC3=CC=CC(C4=CC('
# 'F)=CC=C4)=C3)=O)=C2)=CC=C1)=O')), 2) == 4.49
# assert round(reward_penalized_log_p(Chem.MolFromSmiles('ClC(C('
# 'Cl)=C1)=CC=C1NC2=CC=CC=C2C(NC(NC3=C(C(NC4=C(Cl)C=CC=C4)=S)C=CC=C3)=O)=O')), 2) == 4.93
示例13: get_normalized_values
# 需要導入模塊: from rdkit.Chem import Descriptors [as 別名]
# 或者: from rdkit.Chem.Descriptors import MolLogP [as 別名]
def get_normalized_values():
fname = '/home/bowen/pycharm_deployment_directory/rl_graph_generation/gym-molecule/gym_molecule/dataset/250k_rndm_zinc_drugs_clean.smi'
with open(fname) as f:
smiles = f.readlines()
for i in range(len(smiles)):
smiles[i] = smiles[i].strip()
smiles_rdkit = []
for i in range(len(smiles)):
smiles_rdkit.append(Chem.MolToSmiles(Chem.MolFromSmiles(smiles[i])))
print(i)
logP_values = []
for i in range(len(smiles)):
logP_values.append(MolLogP(Chem.MolFromSmiles(smiles_rdkit[i])))
print(i)
SA_scores = []
for i in range(len(smiles)):
SA_scores.append(
-calculateScore(Chem.MolFromSmiles(smiles_rdkit[i])))
print(i)
cycle_scores = []
for i in range(len(smiles)):
cycle_list = nx.cycle_basis(nx.Graph(
Chem.rdmolops.GetAdjacencyMatrix(Chem.MolFromSmiles(smiles_rdkit[
i]))))
if len(cycle_list) == 0:
cycle_length = 0
else:
cycle_length = max([len(j) for j in cycle_list])
if cycle_length <= 6:
cycle_length = 0
else:
cycle_length = cycle_length - 6
cycle_scores.append(-cycle_length)
print(i)
SA_scores_normalized = (np.array(SA_scores) - np.mean(SA_scores)) / np.std(
SA_scores)
logP_values_normalized = (np.array(logP_values) - np.mean(
logP_values)) / np.std(logP_values)
cycle_scores_normalized = (np.array(cycle_scores) - np.mean(
cycle_scores)) / np.std(cycle_scores)
return np.mean(SA_scores), np.std(SA_scores), np.mean(
logP_values), np.std(logP_values), np.mean(
cycle_scores), np.std(cycle_scores)
# smile = 'C'*38