當前位置: 首頁>>代碼示例>>Python>>正文


Python Crippen.MolLogP方法代碼示例

本文整理匯總了Python中rdkit.Chem.Crippen.MolLogP方法的典型用法代碼示例。如果您正苦於以下問題:Python Crippen.MolLogP方法的具體用法?Python Crippen.MolLogP怎麽用?Python Crippen.MolLogP使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在rdkit.Chem.Crippen的用法示例。


在下文中一共展示了Crippen.MolLogP方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: check_logp

# 需要導入模塊: from rdkit.Chem import Crippen [as 別名]
# 或者: from rdkit.Chem.Crippen import MolLogP [as 別名]
def check_logp(dataset):
    with open('generated_smiles_%s' % dataset, 'rb') as f:   
        all_smiles=set(pickle.load(f))
    logp_sum=0
    total=0
    logp_score_per_molecule=[]
    for smiles in all_smiles:
        new_mol=Chem.MolFromSmiles(smiles)
        try:
            val = Crippen.MolLogP(new_mol)
        except:
            continue
        logp_sum+=val
        logp_score_per_molecule.append(val)
        total+=1
    return logp_sum/total, logp_score_per_molecule 
開發者ID:microsoft,項目名稱:constrained-graph-variational-autoencoder,代碼行數:18,代碼來源:utils.py

示例2: evaluate_chem_mol

# 需要導入模塊: from rdkit.Chem import Crippen [as 別名]
# 或者: from rdkit.Chem.Crippen import MolLogP [as 別名]
def evaluate_chem_mol(mol):
    try:
        Chem.GetSSSR(mol)
        clogp = Crippen.MolLogP(mol)
        mw = MolDescriptors.CalcExactMolWt(mol)
        tpsa = Descriptors.TPSA(mol)
        ret_val = [
            True,
            320 < mw < 420,
            2 < clogp < 3,
            40 < tpsa < 60
        ]
    except:
        ret_val = [False] * 4

    return ret_val



# Same as above but decodes and check if a cached value could be used. 
開發者ID:stan-his,項目名稱:DeepFMPO,代碼行數:22,代碼來源:rewards.py

示例3: evaluate_chem_mol

# 需要導入模塊: from rdkit.Chem import Crippen [as 別名]
# 或者: from rdkit.Chem.Crippen import MolLogP [as 別名]
def evaluate_chem_mol(mol):
    try:
        Chem.GetSSSR(mol)
        clogp = Crippen.MolLogP(mol)
        mw = MolDescriptors.CalcExactMolWt(mol)
        tpsa = Descriptors.TPSA(mol)
        ret_val = [
            True,
            320 < mw < 420,
            2 < clogp < 3,
            40 < tpsa < 60
        ]
    except:
        ret_val = [False] * 4
        
    return ret_val



# Same as above but decodes and check if a cached value could be used. 
開發者ID:stan-his,項目名稱:DeepFMPO,代碼行數:22,代碼來源:rewards.py

示例4: water_octanol_partition_coefficient_scores

# 需要導入模塊: from rdkit.Chem import Crippen [as 別名]
# 或者: from rdkit.Chem.Crippen import MolLogP [as 別名]
def water_octanol_partition_coefficient_scores(mols, norm=False):
        scores = [MolecularMetrics._avoid_sanitization_error(lambda: Crippen.MolLogP(mol)) if mol is not None else None
                  for mol in mols]
        scores = np.array(list(map(lambda x: -3 if x is None else x, scores)))
        scores = np.clip(MolecularMetrics.remap(scores, -2.12178879609, 6.0429063424), 0.0, 1.0) if norm else scores

        return scores 
開發者ID:nicola-decao,項目名稱:MolGAN,代碼行數:9,代碼來源:molecular_metrics.py

示例5: water_octanol_partition_coefficient_scores

# 需要導入模塊: from rdkit.Chem import Crippen [as 別名]
# 或者: from rdkit.Chem.Crippen import MolLogP [as 別名]
def water_octanol_partition_coefficient_scores(mols, norm=False):
        scores = [MolecularMetrics._avoid_sanitization_error(lambda: Crippen.MolLogP(Chem.AddHs(mol, 1))) if mol is not None else None
                  for mol in mols]
        scores = np.array(list(map(lambda x: -3 if x is None else x, scores)))
        scores = np.clip(MolecularMetrics.remap(scores, -2.12178879609, 6.0429063424), 0.0, 1.0) if norm else scores

        return scores 
開發者ID:pfnet-research,項目名稱:graph-nvp,代碼行數:9,代碼來源:molecular_metrics.py

示例6: logP

# 需要導入模塊: from rdkit.Chem import Crippen [as 別名]
# 或者: from rdkit.Chem.Crippen import MolLogP [as 別名]
def logP(smile, train_smiles=None):
    try:
        low_logp = -2.12178879609
        high_logp = 6.0429063424
        logp = Crippen.MolLogP(Chem.MolFromSmiles(smile))
        val = remap(logp, low_logp, high_logp)
        val = np.clip(val, 0.0, 1.0)
        return val
    except ValueError:
        return 0.0

#====== druglikeliness 
開發者ID:gablg1,項目名稱:ORGAN,代碼行數:14,代碼來源:mol_metrics.py

示例7: properties

# 需要導入模塊: from rdkit.Chem import Crippen [as 別名]
# 或者: from rdkit.Chem.Crippen import MolLogP [as 別名]
def properties(mol):
    """
    Calculates the properties that are required to calculate the QED descriptor.
    """
    matches = []
    if mol is None:
        raise WrongArgument("properties(mol)", "mol argument is \'None\'")
    x = [0] * 9
    # MW
    x[0] = Descriptors.MolWt(mol)
    # ALOGP
    x[1] = Descriptors.MolLogP(mol)
    for hba in Acceptors:                                                        # HBA
        if mol.HasSubstructMatch(hba):
            matches = mol.GetSubstructMatches(hba)
            x[2] += len(matches)
    x[3] = Descriptors.NumHDonors(
        mol)                                            # HBD
    # PSA
    x[4] = Descriptors.TPSA(mol)
    x[5] = Descriptors.NumRotatableBonds(
        mol)                                    # ROTB
    x[6] = Chem.GetSSSR(Chem.DeleteSubstructs(
        deepcopy(mol), AliphaticRings))    # AROM
    for alert in StructuralAlerts:                                                # ALERTS
        if (mol.HasSubstructMatch(alert)):
            x[7] += 1
    ro5_failed = 0
    if x[3] > 5:
        ro5_failed += 1  # HBD
    if x[2] > 10:
        ro5_failed += 1  # HBA
    if x[0] >= 500:
        ro5_failed += 1
    if x[1] > 5:
        ro5_failed += 1
    x[8] = ro5_failed
    return x 
開發者ID:gablg1,項目名稱:ORGAN,代碼行數:40,代碼來源:mol_metrics.py

示例8: logP_mw

# 需要導入模塊: from rdkit.Chem import Crippen [as 別名]
# 或者: from rdkit.Chem.Crippen import MolLogP [as 別名]
def logP_mw(fnames, is_active=False):
    """ logP and molecular weight calculation for logP ~ MW chemical space visualization

    Arguments:
        fnames (list): List of file paths that contains CANONICAL_SMILES (, LOGP and MWT
            if it contains the logP and molecular weight for each molecule).
        is_active (bool, optional): selecting only active ligands (True) or all of the molecules (False)
            if it is true, the molecule with PCHEMBL_VALUE >= 6.5 or SCORE > 0.5 will be selected.
            (Default: False)

    Returns:
        df (DataFrame): The table contains three columns;
            molecular weight, logP and index of file name in the fnames
    """
    df = pd.DataFrame()
    for i, fname in enumerate(fnames):
        print(fname)
        sub = pd.read_table(fname)
        sub['LABEL'] = i
        if 'PCHEMBL_VALUE' in sub.columns:
            sub = sub[sub.PCHEMBL_VALUE >= (6.5 if is_active else 0)]
        elif 'SCORE' in sub.columns:
            sub = sub[sub.SCORE > (0.5 if is_active else 0)]
        sub = sub.drop_duplicates(subset='CANONICAL_SMILES')
        if not ('LOGP' in sub.columns and 'MWT' in sub.columns):
            # If the the table does not contain LOGP and MWT
            # it will calculate these coefficients with RDKit.
            logp, mwt = [], []
            for i, row in sub.iterrows():
                try:
                    mol = Chem.MolFromSmiles(row.CANONICAL_SMILES)
                    x, y = desc.MolWt(mol), Crippen.MolLogP(mol)
                    logp.append(y)
                    mwt.append(x)
                except:
                    sub = sub.drop(i)
                    print(row.CANONICAL_SMILES)
            sub['LOGP'], sub['MWT'] = logp, mwt
        df = df.append(sub[['MWT', 'LOGP', 'LABEL']])
    return df 
開發者ID:XuhanLiu,項目名稱:DrugEx,代碼行數:42,代碼來源:metric.py

示例9: calc_esol_descriptors

# 需要導入模塊: from rdkit.Chem import Crippen [as 別名]
# 或者: from rdkit.Chem.Crippen import MolLogP [as 別名]
def calc_esol_descriptors(self, mol):
        """
        Calcuate mw,logp,rotors and aromatic proportion (ap)
        :param mol: input molecule
        :return: named tuple with descriptor values
        """
        mw = Descriptors.MolWt(mol)
        logp = Crippen.MolLogP(mol)
        rotors = Lipinski.NumRotatableBonds(mol)
        ap = self.calc_ap(mol)
        return self.Descriptor(mw=mw, logp=logp, rotors=rotors, ap=ap) 
開發者ID:PatWalters,項目名稱:solubility,代碼行數:13,代碼來源:esol.py

示例10: PhyChem

# 需要導入模塊: from rdkit.Chem import Crippen [as 別名]
# 或者: from rdkit.Chem.Crippen import MolLogP [as 別名]
def PhyChem(smiles):
    """ Calculating the 19D physicochemical descriptors for each molecules,
    the value has been normalized with Gaussian distribution.

    Arguments:
        smiles (list): list of SMILES strings.
    Returns:
        props (ndarray): m X 19 matrix as nomalized PhysChem descriptors.
            m is the No. of samples
    """
    props = []
    for smile in smiles:
        mol = Chem.MolFromSmiles(smile)
        try:
            MW = desc.MolWt(mol)
            LOGP = Crippen.MolLogP(mol)
            HBA = Lipinski.NumHAcceptors(mol)
            HBD = Lipinski.NumHDonors(mol)
            rotable = Lipinski.NumRotatableBonds(mol)
            amide = AllChem.CalcNumAmideBonds(mol)
            bridge = AllChem.CalcNumBridgeheadAtoms(mol)
            heteroA = Lipinski.NumHeteroatoms(mol)
            heavy = Lipinski.HeavyAtomCount(mol)
            spiro = AllChem.CalcNumSpiroAtoms(mol)
            FCSP3 = AllChem.CalcFractionCSP3(mol)
            ring = Lipinski.RingCount(mol)
            Aliphatic = AllChem.CalcNumAliphaticRings(mol)
            aromatic = AllChem.CalcNumAromaticRings(mol)
            saturated = AllChem.CalcNumSaturatedRings(mol)
            heteroR = AllChem.CalcNumHeterocycles(mol)
            TPSA = MolSurf.TPSA(mol)
            valence = desc.NumValenceElectrons(mol)
            mr = Crippen.MolMR(mol)
            # charge = AllChem.ComputeGasteigerCharges(mol)
            prop = [MW, LOGP, HBA, HBD, rotable, amide, bridge, heteroA, heavy, spiro,
                    FCSP3, ring, Aliphatic, aromatic, saturated, heteroR, TPSA, valence, mr]
        except:
            print(smile)
            prop = [0] * 19
        props.append(prop)
    props = np.array(props)
    props = Scaler().fit_transform(props)
    return props 
開發者ID:XuhanLiu,項目名稱:DrugEx,代碼行數:45,代碼來源:metric.py


注:本文中的rdkit.Chem.Crippen.MolLogP方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。