本文整理匯總了Python中rdkit.Chem.AllChem.MolToSmiles方法的典型用法代碼示例。如果您正苦於以下問題:Python AllChem.MolToSmiles方法的具體用法?Python AllChem.MolToSmiles怎麽用?Python AllChem.MolToSmiles使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類rdkit.Chem.AllChem
的用法示例。
在下文中一共展示了AllChem.MolToSmiles方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: make_iso_smiles
# 需要導入模塊: from rdkit.Chem import AllChem [as 別名]
# 或者: from rdkit.Chem.AllChem import MolToSmiles [as 別名]
def make_iso_smiles(mol):
'''enumerate chiral centers and return list of smiles'''
#for some reason rdkit can't detect chiral centers without a structure
Chem.EmbedMultipleConfs(mol)
Chem.rdmolops.AssignAtomChiralTagsFromStructure(mol)
chirals = [] # chiral atoms
Chem.rdmolops.AssignStereochemistry(mol) #make sure this is done
for a in mol.GetAtoms():
if a.GetChiralTag() == Chem.rdchem.CHI_TETRAHEDRAL_CCW or a.GetChiralTag() == Chem.rdchem.CHI_TETRAHEDRAL_CW:
chirals.append(a)
cmask = itertools.product(*[[0,1]]*len(chirals))
if len(chirals) == 0:
return [Chem.MolToSmiles(mol)]
else:
ret = []
for m in cmask:
for i in xrange(len(chirals)):
if m[i]:
chirals[i].SetChiralTag(Chem.rdchem.CHI_TETRAHEDRAL_CCW)
else:
chirals[i].SetChiralTag(Chem.rdchem.CHI_TETRAHEDRAL_CW)
ret.append(Chem.MolToSmiles(mol,True))
return ret
示例2: calcfingerprint
# 需要導入模塊: from rdkit.Chem import AllChem [as 別名]
# 或者: from rdkit.Chem.AllChem import MolToSmiles [as 別名]
def calcfingerprint(mol, args):
'''Return a list of the bits/cnts of the fingerprint of mol.
Uses fingerprint settings from args which should have been the result
of a parse of addfpargs'''
if args.fp == 'rdkit':
fp = Chem.RDKFingerprint(mol,fpSize=args.fpbits)
return [int(x) for x in fp.ToBitString()]
elif args.fp.startswith('ecfp'):
diameter = int(args.fp.replace('ecfp',''))
r = diameter/2
fp = Chem.GetMorganFingerprintAsBitVect(mol,r,nBits=args.fpbits)
return [int(x) for x in fp.ToBitString()]
elif args.fp == 'maccs':
fp = MACCSkeys.GenMACCSKeys(mol)
return [int(x) for x in fp.ToBitString()]
elif args.fp == 'smarts':
if args.smartsfile:
smarts = args.smartsfile
ret = [0]*len(smarts)
for (i,smart) in enumerate(smarts):
if mol.HasSubstructMatch(smart):
ret[i] = 1
return ret
else:
sys.stderr.write("ERROR: Must provide SMARTS file with --smarts\n")
sys.exit(-1)
elif args.fp == 'fp2':
smi = Chem.MolToSmiles(mol)
obmol = pybel.readstring('smi',smi)
fp = obmol.calcfp(fptype='FP2')
ret = [0]*1021 #FP2 are mod 1021
for setbit in fp.bits:
#but pybel makes the bits start at 1 for some reason
assert(setbit>0)
ret[setbit-1] = 1
return ret
else:
return []
示例3: get_molecule_smi
# 需要導入模塊: from rdkit.Chem import AllChem [as 別名]
# 或者: from rdkit.Chem.AllChem import MolToSmiles [as 別名]
def get_molecule_smi(mol_obj):
return Chem.MolToSmiles(mol_obj)
示例4: canon_smiles
# 需要導入模塊: from rdkit.Chem import AllChem [as 別名]
# 或者: from rdkit.Chem.AllChem import MolToSmiles [as 別名]
def canon_smiles(smi):
return Chem.MolToSmiles(Chem.MolFromSmiles(smi), isomericSmiles=True, canonical=True)
示例5: mol_to_dic
# 需要導入模塊: from rdkit.Chem import AllChem [as 別名]
# 或者: from rdkit.Chem.AllChem import MolToSmiles [as 別名]
def mol_to_dic(node, withAmounts = False):
'''Converts a node containing molecule information into a
dictionary'''
dic = {}
# Get name
dic['name'] = str(node.getElementsByTagName('name')[0].firstChild.nodeValue)
# If exact entity match, more data is available
#print(node.toprettyxml())
#entityType = node.getElementsByTagName('dl:entityType')[0].firstChild.nodeValue
#if entityType == 'exact' or entityType == 'definiteReference':
identifiers = {
child.attributes.getNamedItem('dictRef').value : \
child.attributes.getNamedItem('value').value \
for child in node.getElementsByTagName('identifier')
}
if 'cml:inchi' in identifiers.keys():
mol = AllChem.MolFromInchi(str(identifiers['cml:inchi']))
elif 'cml:smiles' in identifiers.keys():
mol = AllChem.MolFromSmiles(str(identifiers['cml:smiles']))
else:
print('identifiers: {}'.format(identifiers.keys()))
raise ValueError('No molecular identifier for {}'.format(dic['name']))
if not mol: raise ValueError('Couldnt parse molecule: {}'.format(identifiers))
Chem.SanitizeMol(mol)
dic['smiles'] = AllChem.MolToSmiles(mol, isomericSmiles=True)
dic['inchi'] = AllChem.MolToInchi(mol)
# elif entityType == 'chemicalClass':
# pass # name is all we get
# else:
# raise ValueError('Unknown entityType for molecule: {}'.format(entityType))
# Quantity?
if withAmounts:
amounts = {
child.attributes.getNamedItem('units').value : \
child.firstChild.nodeValue \
for child in node.getElementsByTagName('amount')
}
if 'unit:percentYield' in amounts.keys():
dic['yield'] = float(amounts['unit:percentYield'])
if 'unit:g' in amounts.keys():
dic['amount(g)'] = float(amounts['unit:g'])
return dic
示例6: shingling_from_mol
# 需要導入模塊: from rdkit.Chem import AllChem [as 別名]
# 或者: from rdkit.Chem.AllChem import MolToSmiles [as 別名]
def shingling_from_mol(in_mol, radius=3, rings=True, kekulize=True, min_radius=1):
"""Creates a molecular shingling from a RDKit molecule (rdkit.Chem.rdchem.Mol).
Arguments:
in_mol {rdkit.Chem.rdchem.Mol} -- A RDKit molecule instance
radius {int} -- The MHFP radius (a radius of 3 corresponds to MHFP6) (default: {3})
rings {boolean} -- Whether or not to include rings in the shingling (default: {True})
kekulize {boolean} -- Whether or not to kekulize the the extracted SMILES (default: {True})
min_radius {int} -- The minimum radius that is used to extract n-grams (default: {1})
Returns:
list -- The molecular shingling.
"""
shingling = []
if rings:
for ring in AllChem.GetSymmSSSR(in_mol):
bonds = set()
ring = list(ring)
for i in ring:
for j in ring:
if i != j:
bond = in_mol.GetBondBetweenAtoms(i, j)
if bond != None:
bonds.add(bond.GetIdx())
shingling.append(
AllChem.MolToSmiles(
AllChem.PathToSubmol(in_mol, list(bonds)), canonical=True
).encode("utf-8")
)
if min_radius == 0:
for i, atom in enumerate(in_mol.GetAtoms()):
shingling.append(atom.GetSmarts().encode("utf-8"))
for index, _ in enumerate(in_mol.GetAtoms()):
for i in range(1, radius + 1):
p = AllChem.FindAtomEnvironmentOfRadiusN(in_mol, i, index)
amap = {}
submol = AllChem.PathToSubmol(in_mol, p, atomMap=amap)
if index not in amap:
continue
smiles = AllChem.MolToSmiles(
submol, rootedAtAtom=amap[index], canonical=True
)
if smiles is not "":
shingling.append(smiles.encode("utf-8"))
# Set ensures that the same shingle is not hashed multiple times
# (which would not change the hash, since there would be no new minima)
return list(set(shingling))