本文整理匯總了Python中rdkit.Chem.AllChem.GetMorganFingerprint方法的典型用法代碼示例。如果您正苦於以下問題:Python AllChem.GetMorganFingerprint方法的具體用法?Python AllChem.GetMorganFingerprint怎麽用?Python AllChem.GetMorganFingerprint使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類rdkit.Chem.AllChem
的用法示例。
在下文中一共展示了AllChem.GetMorganFingerprint方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: transform_mol
# 需要導入模塊: from rdkit.Chem import AllChem [as 別名]
# 或者: from rdkit.Chem.AllChem import GetMorganFingerprint [as 別名]
def transform_mol(self, mol, misses=False):
""" transforms the mol into a dense array using the fitted keys as index
:parameter mol: the RDKit molecule to be transformed
:parameter misses: wheter to return the number of key misses for the molecule
"""
assert type(self.keys) is np.ndarray, "keys are not defined or is not an np.array, has the .fit(mols) function been used?"
#Get fingerprint as a dictionary
fp = AllChem.GetMorganFingerprint(mol,self.radius)
fp_d = fp.GetNonzeroElements()
#Prepare the array, and set the values
#TODO is there a way to vectorize and speed up this?
arr = np.zeros((self.dims,))
_misses = 0
for key, value in fp_d.items():
if key in self.keys:
arr[self.keys == key] = value
else:
_misses = _misses + 1
if misses:
return arr, _misses
else:
return arr
示例2: _generateFPs
# 需要導入模塊: from rdkit.Chem import AllChem [as 別名]
# 或者: from rdkit.Chem.AllChem import GetMorganFingerprint [as 別名]
def _generateFPs(mol,fragmentMethod='Morgan'):
aBits={}
fp=None
# circular Morgan fingerprint fragmentation, we use a simple invariant than ususal here
if fragmentMethod=='Morgan':
tmp={}
fp = AllChem.GetMorganFingerprint(mol,radius=2,invariants=utilsFP.generateAtomInvariant(mol),bitInfo=tmp)
aBits = utilsFP.getMorganEnvironment(mol, tmp, fp=fp, minRad=2)
fp = fp.GetNonzeroElements()
# path-based RDKit fingerprint fragmentation
elif fragmentMethod=='RDK':
fp = AllChem.UnfoldedRDKFingerprintCountBased(mol,maxPath=5,minPath=3,bitInfo=aBits)
fp = fp.GetNonzeroElements()
# get the final BRICS fragmentation (= smallest possible BRICS fragments of a molecule)
elif fragmentMethod=='Brics':
fragMol=BRICS.BreakBRICSBonds(mol)
propSmi = _prepBRICSSmiles(fragMol)
fp=Counter(propSmi.split('.'))
else:
print("Unknown fragment method")
return fp, aBits
# this function is not part of the class due to parallelisation
# generate the fragments of a molecule, return a map with moleculeID and fragment dict
示例3: new_mol
# 需要導入模塊: from rdkit.Chem import AllChem [as 別名]
# 或者: from rdkit.Chem.AllChem import GetMorganFingerprint [as 別名]
def new_mol(self, name):
if self.sanitized:
mol = Chem.MolFromSmiles(name)
else:
mol = Chem.MolFromSmarts(name)
if mol is None:
return None
else:
mg = MolGraph(name, self.sanitized, mol=mol)
if self.fp_degree > 0:
bi = {} if self.fp_info else None
feat = AllChem.GetMorganFingerprint(mol, self.fp_degree, bitInfo=bi, invariants=self._get_inv(mol))
on_bits = list(feat.GetNonzeroElements().keys())
mg.fingerprints = on_bits
mg.fp_info = bi
return mg
示例4: CalculateMorganFingerprint
# 需要導入模塊: from rdkit.Chem import AllChem [as 別名]
# 或者: from rdkit.Chem.AllChem import GetMorganFingerprint [as 別名]
def CalculateMorganFingerprint(mol, radius=2):
"""
#################################################################
Calculate Morgan
Usage:
result=CalculateMorganFingerprint(mol)
Input: mol is a molecule object.
radius is a radius.
Output: result is a tuple form. The first is the number of
fingerprints. The second is a dict form whose keys are the
position which this molecule has some substructure. The third
is the DataStructs which is used for calculating the similarity.
#################################################################
"""
res = AllChem.GetMorganFingerprint(mol, radius)
return res.GetLength(), res.GetNonzeroElements(), res
示例5: NP_score
# 需要導入模塊: from rdkit.Chem import AllChem [as 別名]
# 或者: from rdkit.Chem.AllChem import GetMorganFingerprint [as 別名]
def NP_score(smile):
mol = Chem.MolFromSmiles(smile)
fp = Chem.GetMorganFingerprint(mol, 2)
bits = fp.GetNonzeroElements()
# calculating the score
score = 0.
for bit in bits:
score += NP_model.get(bit, 0)
score /= float(mol.GetNumAtoms())
# preventing score explosion for exotic molecules
if score > 4:
score = 4. + math.log10(score - 4. + 1.)
if score < -4:
score = -4. - math.log10(-4. - score + 1.)
val = np.clip(remap(score, -3, 1), 0.0, 1.0)
return val
示例6: fingerprints_from_mol
# 需要導入模塊: from rdkit.Chem import AllChem [as 別名]
# 或者: from rdkit.Chem.AllChem import GetMorganFingerprint [as 別名]
def fingerprints_from_mol(mol):
fp = AllChem.GetMorganFingerprint(mol, 3, useCounts=True, useFeatures=True)
size = 2048
nfp = np.zeros((1, size), np.int32)
for idx,v in fp.GetNonzeroElements().items():
nidx = idx%size
nfp[0, nidx] += int(v)
return nfp
示例7: __init__
# 需要導入模塊: from rdkit.Chem import AllChem [as 別名]
# 或者: from rdkit.Chem.AllChem import GetMorganFingerprint [as 別名]
def __init__(self):
query_mol = Chem.MolFromSmiles(self.query_structure)
self.query_fp = AllChem.GetMorganFingerprint(query_mol, 2, useCounts=True, useFeatures=True)
示例8: __call__
# 需要導入模塊: from rdkit.Chem import AllChem [as 別名]
# 或者: from rdkit.Chem.AllChem import GetMorganFingerprint [as 別名]
def __call__(self, smile):
mol = Chem.MolFromSmiles(smile)
if mol:
fp = AllChem.GetMorganFingerprint(mol, 2, useCounts=True, useFeatures=True)
score = DataStructs.TanimotoSimilarity(self.query_fp, fp)
score = min(score, self.k) / self.k
return float(score)
return 0.0
示例9: fingerprints_from_mol
# 需要導入模塊: from rdkit.Chem import AllChem [as 別名]
# 或者: from rdkit.Chem.AllChem import GetMorganFingerprint [as 別名]
def fingerprints_from_mol(cls, mol):
fp = AllChem.GetMorganFingerprint(mol, 3, useCounts=True, useFeatures=True)
size = 2048
nfp = np.zeros((1, size), np.int32)
for idx,v in fp.GetNonzeroElements().items():
nidx = idx%size
nfp[0, nidx] += int(v)
return nfp
示例10: fit
# 需要導入模塊: from rdkit.Chem import AllChem [as 別名]
# 或者: from rdkit.Chem.AllChem import GetMorganFingerprint [as 別名]
def fit(self, mols):
"""Analyses the molecules and creates the key index for the creation of the dense array"""
keys=set()
for mol in mols:
fp = AllChem.GetMorganFingerprint(mol,self.radius)
keys.update(fp.GetNonzeroElements().keys())
keys = list(keys)
keys.sort()
self.keys= np.array(keys)
self.dims = len(self.keys)
示例11: load_model
# 需要導入模塊: from rdkit.Chem import AllChem [as 別名]
# 或者: from rdkit.Chem.AllChem import GetMorganFingerprint [as 別名]
def load_model(self, FP_len=1024, model_tag='1024bool'):
self.FP_len = FP_len
if model_tag != '1024bool' and model_tag != '1024uint8' and model_tag != '2048bool':
MyLogger.print_and_log(
'Non-existent SCScore model requested: {}. Using "1024bool" model'.format(model_tag), scscore_prioritizer_loc, level=2)
model_tag = '1024bool'
filename = 'trained_model_path_'+model_tag
with open(gc.SCScore_Prioritiaztion[filename], 'rb') as fid:
self.vars = pickle.load(fid)
if gc.DEBUG:
MyLogger.print_and_log('Loaded synthetic complexity score prioritization model from {}'.format(
gc.SCScore_Prioritiaztion[filename]), scscore_prioritizer_loc)
if 'uint8' in gc.SCScore_Prioritiaztion[filename]:
def mol_to_fp(mol):
if mol is None:
return np.array((self.FP_len,), dtype=np.uint8)
fp = AllChem.GetMorganFingerprint(
mol, self.FP_rad, useChirality=True) # uitnsparsevect
fp_folded = np.zeros((self.FP_len,), dtype=np.uint8)
for k, v in fp.GetNonzeroElements().items():
fp_folded[k % self.FP_len] += v
return np.array(fp_folded)
else:
def mol_to_fp(mol):
if mol is None:
return np.zeros((self.FP_len,), dtype=np.float32)
return np.array(AllChem.GetMorganFingerprintAsBitVect(mol, self.FP_rad, nBits=self.FP_len,
useChirality=True), dtype=np.bool)
self.mol_to_fp = mol_to_fp
self.pricer = Pricer()
self.pricer.load()
self._restored = True
self._loaded = True
示例12: depict_identifier
# 需要導入模塊: from rdkit.Chem import AllChem [as 別名]
# 或者: from rdkit.Chem.AllChem import GetMorganFingerprint [as 別名]
def depict_identifier(mol, identifier, radius, useFeatures=False, **kwargs):
"""Depict an identifier in Morgan fingerprint.
Parameters
----------
mol : rdkit.Chem.rdchem.Mol
RDKit molecule
identifier : int or str
Feature identifier from Morgan fingerprint
radius : int
Radius of Morgan FP
useFeatures : bool
Use feature-based Morgan FP
Returns
-------
IPython.display.SVG
"""
identifier = int(identifier)
info = {}
AllChem.GetMorganFingerprint(mol, radius, bitInfo=info, useFeatures=useFeatures)
if identifier in info.keys():
atoms, radii = zip(*info[identifier])
return depict_atoms(mol, atoms, radii, **kwargs)
else:
return mol_to_svg(mol, **kwargs)
示例13: mol2alt_sentence
# 需要導入模塊: from rdkit.Chem import AllChem [as 別名]
# 或者: from rdkit.Chem.AllChem import GetMorganFingerprint [as 別名]
def mol2alt_sentence(mol, radius):
"""Same as mol2sentence() expect it only returns the alternating sentence
Calculates ECFP (Morgan fingerprint) and returns identifiers of substructures as 'sentence' (string).
Returns a tuple with 1) a list with sentence for each radius and 2) a sentence with identifiers from all radii
combined.
NOTE: Words are ALWAYS reordered according to atom order in the input mol object.
NOTE: Due to the way how Morgan FPs are generated, number of identifiers at each radius is smaller
Parameters
----------
mol : rdkit.Chem.rdchem.Mol
radius : float
Fingerprint radius
Returns
-------
list
alternating sentence
combined
"""
radii = list(range(int(radius) + 1))
info = {}
_ = AllChem.GetMorganFingerprint(mol, radius, bitInfo=info) # info: dictionary identifier, atom_idx, radius
mol_atoms = [a.GetIdx() for a in mol.GetAtoms()]
dict_atoms = {x: {r: None for r in radii} for x in mol_atoms}
for element in info:
for atom_idx, radius_at in info[element]:
dict_atoms[atom_idx][radius_at] = element # {atom number: {fp radius: identifier}}
# merge identifiers alternating radius to sentence: atom 0 radius0, atom 0 radius 1, etc.
identifiers_alt = []
for atom in dict_atoms: # iterate over atoms
for r in radii: # iterate over radii
identifiers_alt.append(dict_atoms[atom][r])
alternating_sentence = map(str, [x for x in identifiers_alt if x])
return list(alternating_sentence)
示例14: CalculateECFP2Fingerprint
# 需要導入模塊: from rdkit.Chem import AllChem [as 別名]
# 或者: from rdkit.Chem.AllChem import GetMorganFingerprint [as 別名]
def CalculateECFP2Fingerprint(mol, radius=1):
"""
#################################################################
Calculate ECFP2
Usage:
result=CalculateECFP2Fingerprint(mol)
Input: mol is a molecule object.
radius is a radius.
Output: result is a tuple form. The first is the vector of
fingerprints. The second is a dict form whose keys are the
position which this molecule has some substructure. The third
is the DataStructs which is used for calculating the similarity.
#################################################################
"""
res = AllChem.GetMorganFingerprint(mol, radius)
fp = tuple(AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=1024))
return fp, res.GetNonzeroElements(), res
示例15: CalculateECFP4Fingerprint
# 需要導入模塊: from rdkit.Chem import AllChem [as 別名]
# 或者: from rdkit.Chem.AllChem import GetMorganFingerprint [as 別名]
def CalculateECFP4Fingerprint(mol, radius=2):
"""
#################################################################
Calculate ECFP4
Usage:
result=CalculateECFP4Fingerprint(mol)
Input: mol is a molecule object.
radius is a radius.
Output: result is a tuple form. The first is the vector of
fingerprints. The second is a dict form whose keys are the
position which this molecule has some substructure. The third
is the DataStructs which is used for calculating the similarity.
#################################################################
"""
res = AllChem.GetMorganFingerprint(mol, radius)
fp = tuple(AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=1024))
return fp, res.GetNonzeroElements(), res