本文整理匯總了Python中ray.tune.run方法的典型用法代碼示例。如果您正苦於以下問題:Python tune.run方法的具體用法?Python tune.run怎麽用?Python tune.run使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類ray.tune
的用法示例。
在下文中一共展示了tune.run方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: ray_trainable
# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import run [as 別名]
def ray_trainable(config, reporter):
'''
Create an instance of a trainable function for ray: https://ray.readthedocs.io/en/latest/tune-usage.html#training-api
Lab needs a spec and a trial_index to be carried through config, pass them with config in ray.run() like so:
config = {
'spec': spec,
'trial_index': tune.sample_from(lambda spec: gen_trial_index()),
... # normal ray config with sample, grid search etc.
}
'''
from convlab.experiment.control import Trial
# restore data carried from ray.run() config
spec = config.pop('spec')
trial_index = config.pop('trial_index')
spec['meta']['trial'] = trial_index
spec = inject_config(spec, config)
# run SLM Lab trial
metrics = Trial(spec).run()
metrics.update(config) # carry config for analysis too
# ray report to carry data in ray trial.last_result
reporter(trial_data={trial_index: metrics})
示例2: _rsync_func
# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import run [as 別名]
def _rsync_func(local_dir, remote_uri):
"""rsync data from worker to a remote location (by default the driver)."""
# SOMEDAY: This function blocks until syncing completes, which is unfortunate.
# If we instead specified a shell command, ray.tune._LogSyncer would run it asynchronously.
# But we need to do a two-stage command, creating the directories first, because rsync will
# balk if destination directory does not exist; so no easy way to do that.
remote_host, ssh_key, *remainder = remote_uri.split(":")
remote_dir = ":".join(remainder) # remote directory may contain :
remote_dir = shlex.quote(remote_dir) # make safe for SSH/rsync call
ssh_command = ["ssh", "-o", "StrictHostKeyChecking=no", "-i", ssh_key]
ssh_mkdir = ssh_command + [remote_host, "mkdir", "-p", remote_dir]
subprocess.run(ssh_mkdir, check=True)
rsync = [
"rsync",
"-rlptv",
"-e",
" ".join(ssh_command),
f"{local_dir}/",
f"{remote_host}:{remote_dir}",
]
subprocess.run(rsync)
示例3: config
# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import run [as 別名]
def config():
sacred_ex_name = "expert_demos" # The experiment to parallelize
init_kwargs = {} # Keyword arguments to pass to ray.init()
_uuid = make_unique_timestamp()
run_name = f"DEFAULT_{_uuid}" # CLI --name option. For analysis grouping.
resources_per_trial = {} # Argument to `tune.run`
base_named_configs = [] # Background settings before search_space is applied
base_config_updates = {} # Background settings before search_space is applied
search_space = {
"named_configs": [],
"config_updates": {},
} # `config` argument to `ray.tune.run(trainable, config)`
local_dir = None # `local_dir` arg for `ray.tune.run`
upload_dir = None # `upload_dir` arg for `ray.tune.run`
n_seeds = 3 # Number of seeds to search over by default
示例4: generate_test_data
# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import run [as 別名]
def generate_test_data():
"""Used by tests/generate_test_data.sh to generate tests/data/gather_tb/.
"tests/data/gather_tb/" should contain 4 Tensorboard run directories ("sb_tb/" and
"tb/" for each of two trials in the search space below).
"""
sacred_ex_name = "expert_demos"
run_name = "TEST"
n_seeds = 1
search_space = {
"config_updates": {
"init_rl_kwargs": {
"learning_rate": tune.grid_search([3e-4 * x for x in (1 / 3, 1 / 2)]),
},
}
}
base_named_configs = ["cartpole", "fast"]
base_config_updates = {
"init_tensorboard": True,
"rollout_save_final": False,
}
示例5: testRegisterEnvOverwrite
# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import run [as 別名]
def testRegisterEnvOverwrite(self):
def train(config, reporter):
reporter(timesteps_total=100, done=True)
def train2(config, reporter):
reporter(timesteps_total=200, done=True)
register_trainable("f1", train)
register_trainable("f1", train2)
[trial] = run_experiments({
"foo": {
"run": "f1",
}
})
self.assertEqual(trial.status, Trial.TERMINATED)
self.assertEqual(trial.last_result[TIMESTEPS_TOTAL], 200)
示例6: testTrainableCallable
# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import run [as 別名]
def testTrainableCallable(self):
def dummy_fn(config, reporter, steps):
reporter(timesteps_total=steps, done=True)
from functools import partial
steps = 500
register_trainable("test", partial(dummy_fn, steps=steps))
[trial] = run_experiments({
"foo": {
"run": "test",
}
})
self.assertEqual(trial.status, Trial.TERMINATED)
self.assertEqual(trial.last_result[TIMESTEPS_TOTAL], steps)
[trial] = tune.run(partial(dummy_fn, steps=steps)).trials
self.assertEqual(trial.status, Trial.TERMINATED)
self.assertEqual(trial.last_result[TIMESTEPS_TOTAL], steps)
示例7: testLogdirStartingWithTilde
# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import run [as 別名]
def testLogdirStartingWithTilde(self):
local_dir = "~/ray_results/local_dir"
def train(config, reporter):
cwd = os.getcwd()
assert cwd.startswith(os.path.expanduser(local_dir)), cwd
assert not cwd.startswith("~"), cwd
reporter(timesteps_total=1)
register_trainable("f1", train)
run_experiments({
"foo": {
"run": "f1",
"local_dir": local_dir,
"config": {
"a": "b"
},
}
})
示例8: testLongFilename
# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import run [as 別名]
def testLongFilename(self):
def train(config, reporter):
assert os.path.join(ray.utils.get_user_temp_dir(), "logdir",
"foo") in os.getcwd(), os.getcwd()
reporter(timesteps_total=1)
register_trainable("f1", train)
run_experiments({
"foo": {
"run": "f1",
"local_dir": os.path.join(ray.utils.get_user_temp_dir(),
"logdir"),
"config": {
"a" * 50: tune.sample_from(lambda spec: 5.0 / 7),
"b" * 50: tune.sample_from(lambda spec: "long" * 40),
},
}
})
示例9: testBadStoppingReturn
# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import run [as 別名]
def testBadStoppingReturn(self):
def train(config, reporter):
reporter()
register_trainable("f1", train)
def f():
run_experiments({
"foo": {
"run": "f1",
"stop": {
"time": 10
},
}
})
self.assertRaises(TuneError, f)
示例10: testNestedStoppingReturn
# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import run [as 別名]
def testNestedStoppingReturn(self):
def train(config, reporter):
for i in range(10):
reporter(test={"test1": {"test2": i}})
with self.assertRaises(TuneError):
[trial] = tune.run(
train, stop={
"test": {
"test1": {
"test2": 6
}
}
}).trials
[trial] = tune.run(train, stop={"test/test1/test2": 6}).trials
self.assertEqual(trial.last_result["training_iteration"], 7)
示例11: testBadStoppingFunction
# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import run [as 別名]
def testBadStoppingFunction(self):
def train(config, reporter):
for i in range(10):
reporter(test=i)
class CustomStopper:
def stop(self, result):
return result["test"] > 6
def stop(result):
return result["test"] > 6
with self.assertRaises(TuneError):
tune.run(train, stop=CustomStopper().stop)
with self.assertRaises(TuneError):
tune.run(train, stop=stop)
示例12: testTrialInfoAccessFunction
# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import run [as 別名]
def testTrialInfoAccessFunction(self):
def train(config, reporter):
reporter(name=reporter.trial_name, trial_id=reporter.trial_id)
analysis = tune.run(train, stop={TRAINING_ITERATION: 1})
trial = analysis.trials[0]
self.assertEqual(trial.last_result.get("name"), str(trial))
self.assertEqual(trial.last_result.get("trial_id"), trial.trial_id)
def track_train(config):
tune.report(
name=tune.get_trial_name(), trial_id=tune.get_trial_id())
analysis = tune.run(track_train, stop={TRAINING_ITERATION: 1})
trial = analysis.trials[0]
self.assertEqual(trial.last_result.get("name"), str(trial))
self.assertEqual(trial.last_result.get("trial_id"), trial.trial_id)
示例13: testLotsOfStops
# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import run [as 別名]
def testLotsOfStops(self):
class TestTrainable(Trainable):
def step(self):
result = {"name": self.trial_name, "trial_id": self.trial_id}
return result
def cleanup(self):
time.sleep(2)
open(os.path.join(self.logdir, "marker"), "a").close()
return 1
analysis = tune.run(
TestTrainable, num_samples=10, stop={TRAINING_ITERATION: 1})
ray.shutdown()
for trial in analysis.trials:
path = os.path.join(trial.logdir, "marker")
assert os.path.exists(path)
示例14: testIterationCounter
# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import run [as 別名]
def testIterationCounter(self):
def train(config, reporter):
for i in range(100):
reporter(itr=i, timesteps_this_iter=1)
register_trainable("exp", train)
config = {
"my_exp": {
"run": "exp",
"config": {
"iterations": 100,
},
"stop": {
"timesteps_total": 100
},
}
}
[trial] = run_experiments(config)
self.assertEqual(trial.status, Trial.TERMINATED)
self.assertEqual(trial.last_result[TRAINING_ITERATION], 100)
self.assertEqual(trial.last_result["itr"], 99)
示例15: test
# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import run [as 別名]
def test(model, data_loader):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.eval()
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (data, target) in enumerate(data_loader):
# We set this just for the example to run quickly.
if batch_idx * len(data) > TEST_SIZE:
break
data, target = data.to(device), target.to(device)
outputs = model(data)
_, predicted = torch.max(outputs.data, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
return correct / total
# __train_def_end__
# __train_func_begin__