當前位置: 首頁>>代碼示例>>Python>>正文


Python tune.grid_search方法代碼示例

本文整理匯總了Python中ray.tune.grid_search方法的典型用法代碼示例。如果您正苦於以下問題:Python tune.grid_search方法的具體用法?Python tune.grid_search怎麽用?Python tune.grid_search使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在ray.tune的用法示例。


在下文中一共展示了tune.grid_search方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _generic_finetune_defense

# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import grid_search [as 別名]
def _generic_finetune_defense(train, dual_defense=False, envs=None, exp_suffix=""):
    """Finetuning victim against adversary.

    This is the most generic helper method, used as a base for `_hyper_finetune_defense`
    and `_finetune_defense`.
    """
    _sparse_reward(train)
    train["num_env"] = 16  # TODO(adam): cleaner way of allowing finetuning LSTMs
    train["normalize_observations"] = False
    ray_config = {
        FINETUNE_PATHS_TYPES: tune.grid_search(
            _finetune_configs(envs=envs, dual_defense=dual_defense)
        ),
    }
    dual_name = "dual" if dual_defense else "single"
    exp_name = f"finetune_defense_{dual_name}_{exp_suffix}"

    return ray_config, exp_name 
開發者ID:HumanCompatibleAI,項目名稱:adversarial-policies,代碼行數:20,代碼來源:train.py

示例2: generate_test_data

# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import grid_search [as 別名]
def generate_test_data():
    """Used by tests/generate_test_data.sh to generate tests/data/gather_tb/.

    "tests/data/gather_tb/" should contain 4 Tensorboard run directories ("sb_tb/" and
    "tb/" for each of two trials in the search space below).
    """
    sacred_ex_name = "expert_demos"
    run_name = "TEST"
    n_seeds = 1
    search_space = {
        "config_updates": {
            "init_rl_kwargs": {
                "learning_rate": tune.grid_search([3e-4 * x for x in (1 / 3, 1 / 2)]),
            },
        }
    }
    base_named_configs = ["cartpole", "fast"]
    base_config_updates = {
        "init_tensorboard": True,
        "rollout_save_final": False,
    } 
開發者ID:HumanCompatibleAI,項目名稱:imitation,代碼行數:23,代碼來源:parallel.py

示例3: example_gail_easy

# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import grid_search [as 別名]
def example_gail_easy():
    sacred_ex_name = "train_adversarial"
    run_name = "example-gail-easy"
    n_seeds = 1
    search_space = {
        "named_configs": tune.grid_search([[env] for env in EASY_ENVS]),
        "config_updates": {
            "init_trainer_kwargs": {
                "init_rl_kwargs": {
                    "learning_rate": tune.grid_search(np.logspace(3e-6, 1e-1, num=3)),
                    "nminibatches": tune.grid_search([16, 32, 64]),
                },
            },
        },
    }
    base_config_updates = {
        "init_tensorboard": True,
        "init_trainer_kwargs": {"use_gail": True},
    } 
開發者ID:HumanCompatibleAI,項目名稱:imitation,代碼行數:21,代碼來源:parallel.py

示例4: test_ls_with_cfg

# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import grid_search [as 別名]
def test_ls_with_cfg(start_ray, tmpdir):
    experiment_name = "test_ls_with_cfg"
    experiment_path = os.path.join(str(tmpdir), experiment_name)
    tune.run(
        "__fake",
        name=experiment_name,
        stop={"training_iteration": 1},
        config={"test_variable": tune.grid_search(list(range(5)))},
        local_dir=str(tmpdir))

    columns = [CONFIG_PREFIX + "test_variable", "trial_id"]
    limit = 4
    with Capturing() as output:
        commands.list_trials(experiment_path, info_keys=columns, limit=limit)
    lines = output.captured
    assert all(col in lines[1] for col in columns)
    assert lines[1].count("|") == len(columns) + 1
    assert len(lines) == 3 + limit + 1 
開發者ID:ray-project,項目名稱:ray,代碼行數:20,代碼來源:test_commands.py

示例5: tune_example

# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import grid_search [as 別名]
def tune_example(num_workers=1, use_gpu=False):
    TorchTrainable = TorchTrainer.as_trainable(
        model_creator=model_creator,
        data_creator=data_creator,
        optimizer_creator=optimizer_creator,
        loss_creator=nn.MSELoss,  # Note that we specify a Loss class.
        num_workers=num_workers,
        use_gpu=use_gpu,
        config={BATCH_SIZE: 128}
    )

    analysis = tune.run(
        TorchTrainable,
        num_samples=3,
        config={"lr": tune.grid_search([1e-4, 1e-3])},
        stop={"training_iteration": 2},
        verbose=1)

    return analysis.get_best_config(metric="validation_loss", mode="min")
# __end_torch_tune_example__ 
開發者ID:ray-project,項目名稱:ray,代碼行數:22,代碼來源:tune_example.py

示例6: get_tune_config

# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import grid_search [as 別名]
def get_tune_config(tune_options, options_files):
    with open(tune_options) as f:
        options = yaml.load(f, Loader=yaml.FullLoader)

    if "epochs" in options and options["epochs"] == 1:
        raise ValueError("Using only 1 epoch, must be a mistake.")

    config = {}
    for k, v in options.items():
        if not k.startswith("var:"):
            config[k] = v
        else:
            config[k.replace("var:", "")] = tune.grid_search(v)

    if options_files is not None:
        print("Options files: {}".format(options_files))
        config["options"] = [os.path.realpath(op) for op in options_files]

    return config 
開發者ID:arthurdouillard,項目名稱:incremental_learning.pytorch,代碼行數:21,代碼來源:hyperfind.py

示例7: gen_trainer_config

# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import grid_search [as 別名]
def gen_trainer_config(env_config):
    # if args.algo == 'DQN':
    #     config = dqn.DEFAULT_CONFIG.copy()
    # elif args.algo == 'PPO':
    #     config = ppo.DEFAULT_CONFIG.copy()
    # elif args.algo == 'APEX':
    #     config = dqn.apex.APEX_DEFAULT_CONFIG.copy()
    # elif args.algo == 'APPO':
    #     config = ppo.appo.DEFAULT_CONFIG.copy()
    # elif args.algo == 'IMPALA':
    #     config = impala.DEFAULT_CONFIG.copy()
    # elif args.algo == 'A3C':
    #     config = a3c.DEFAULT_CONFIG.copy()
    # elif args.algo == 'A2C':
    #     config = a3c.a2c.A2C_DEFAULT_CONFIG.copy()
    # else:
    #     assert 0 == 1, 'Unexpected args.algo.'
    config = {"ignore_worker_failures": True,
              "env": CityflowGymEnv, "env_config": env_config,
              "num_gpus": 0, "num_workers": 24,
              "num_cpus_per_worker": 1,  # "num_gpus_per_worker": 0.03125,
              "num_cpus_for_driver": 1}

    # config['lr'] = grid_search([1e-2, 1e-3, 1e-4])
    return config 
開發者ID:multi-commander,項目名稱:Multi-Commander,代碼行數:27,代碼來源:train.py

示例8: run_param_specs

# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import grid_search [as 別名]
def run_param_specs(param_specs):
    '''Run the given param_specs in parallel trials using ray. Used for benchmarking.'''
    ray.init()
    ray_trials = tune.run(
        ray_trainable,
        name='param_specs',
        config={
            'spec': tune.grid_search(param_specs),
            'trial_index': 0,
        },
        resources_per_trial=infer_trial_resources(param_specs[0]),
        num_samples=1,
        reuse_actors=False,
        server_port=util.get_port(),
    )
    ray.shutdown() 
開發者ID:kengz,項目名稱:SLM-Lab,代碼行數:18,代碼來源:search.py

示例9: build_config_space

# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import grid_search [as 別名]
def build_config_space(spec):
    '''
    Build ray config space from flattened spec.search
    Specify a config space in spec using `"{key}__{space_type}": {v}`.
    Where `{space_type}` is `grid_search` of `ray.tune`, or any function name of `np.random`:
    - `grid_search`: str/int/float. v = list of choices
    - `choice`: str/int/float. v = list of choices
    - `randint`: int. v = [low, high)
    - `uniform`: float. v = [low, high)
    - `normal`: float. v = [mean, stdev)

    For example:
    - `"explore_anneal_epi__randint": [10, 60],` will sample integers uniformly from 10 to 60 for `explore_anneal_epi`,
    - `"lr__uniform": [0.001, 0.1]`, and it will sample `lr` using `np.random.uniform(0.001, 0.1)`

    If any key uses `grid_search`, it will be combined exhaustively in combination with other random sampling.
    '''
    space_types = ('grid_search', 'choice', 'randint', 'uniform', 'normal')
    config_space = {}
    for k, v in util.flatten_dict(spec['search']).items():
        key, space_type = k.split('__')
        assert space_type in space_types, f'Please specify your search variable as {key}__<space_type> in one of {space_types}'
        if space_type == 'grid_search':
            config_space[key] = tune.grid_search(v)
        elif space_type == 'choice':
            config_space[key] = tune.sample_from(lambda spec, v=v: random.choice(v))
        else:
            np_fn = getattr(np.random, space_type)
            config_space[key] = tune.sample_from(lambda spec, v=v: np_fn(*v))
    return config_space 
開發者ID:ConvLab,項目名稱:ConvLab,代碼行數:32,代碼來源:search.py

示例10: _best_guess_spec

# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import grid_search [as 別名]
def _best_guess_spec(envs=None):
    spec = {
        "config": {
            "env_name:embed_path": tune.grid_search(_env_victim(envs)),
            "embed_index": tune.sample_from(
                lambda spec: VICTIM_INDEX[spec.config["env_name:embed_path"][0]]
            ),
            "seed": tune.grid_search(list(range(3))),
        },
    }
    return spec 
開發者ID:HumanCompatibleAI,項目名稱:adversarial-policies,代碼行數:13,代碼來源:train.py

示例11: _finetune_spec

# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import grid_search [as 別名]
def _finetune_spec(envs=None):
    spec = {
        "config": {
            "env_name:embed_path": tune.grid_search(_env_victim(envs)),
            "seed": tune.grid_search(list(range(3))),
            "load_policy": {
                "path": tune.sample_from(lambda spec: spec.config["env_name:embed_path"][1]),
            },
            "embed_index": tune.sample_from(
                lambda spec: VICTIM_INDEX[spec.config["env_name:embed_path"][0]]
            ),
        },
    }
    return spec 
開發者ID:HumanCompatibleAI,項目名稱:adversarial-policies,代碼行數:16,代碼來源:train.py

示例12: _finetune_defense

# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import grid_search [as 別名]
def _finetune_defense(train, **kwargs):
    """Multi-seed, long (20e6) timestep finetuning against adversary."""
    ray_config, exp_name = _generic_finetune_defense(train, **kwargs)
    ray_config["seed"] = tune.grid_search(list(range(5)))
    spec = {
        "config": ray_config,
    }
    return spec, exp_name


# ### RETRAINING ADVERSARY AGAINST ADVERSARIALLY-FINETUNED VICTIM ### # 
開發者ID:HumanCompatibleAI,項目名稱:adversarial-policies,代碼行數:13,代碼來源:train.py

示例13: _generic_train_adv_against_finetuned

# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import grid_search [as 別名]
def _generic_train_adv_against_finetuned(train, finetune_run, from_scratch=True):
    """Retrain adversary against defensively finetuned victim.

    This is the most generic helper method, that is used by `_hyper_train_adv_against_finetuned`
    and `_train_adv_against_finetuned`."""
    _sparse_reward(train)
    train["embed_type"] = "ppo2"  # all victims are new-style policies because we finetuned them
    ray_config = {
        TRAIN_AGAINST_FINETUNED_PATHS: tune.grid_search(
            _train_against_finetuned_configs(finetune_run=finetune_run, from_scratch=from_scratch)
        ),
    }
    from_scratch_name = "from_scratch" if from_scratch else "finetune"
    exp_name = f"adv_{from_scratch_name}_against_{finetune_run}"
    return ray_config, exp_name 
開發者ID:HumanCompatibleAI,項目名稱:adversarial-policies,代碼行數:17,代碼來源:train.py

示例14: debug_config

# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import grid_search [as 別名]
def debug_config(score):
    """Try zero-agent and random-agent against pre-trained zoo policies."""
    score = dict(score)
    score["episodes"] = 1
    score["agent_a_type"] = "zoo"
    score["agent_b_type"] = "zoo"
    spec = {"config": {"agent_a_path": tune.grid_search(["1", "2"])}}
    exp_suffix = "debug"
    _ = locals()  # quieten flake8 unused variable warning
    del _ 
開發者ID:HumanCompatibleAI,項目名稱:adversarial-policies,代碼行數:12,代碼來源:score.py

示例15: debug_config

# 需要導入模塊: from ray import tune [as 別名]
# 或者: from ray.tune import grid_search [as 別名]
def debug_config():
    spec = {
        "config": {"seed": tune.grid_search([0, 1])},
    }
    exp_name = "debug"
    _ = locals()  # quieten flake8 unused variable warning
    del _ 
開發者ID:HumanCompatibleAI,項目名稱:adversarial-policies,代碼行數:9,代碼來源:train.py


注:本文中的ray.tune.grid_search方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。