本文整理匯總了Python中rasterio.features.shapes方法的典型用法代碼示例。如果您正苦於以下問題:Python features.shapes方法的具體用法?Python features.shapes怎麽用?Python features.shapes使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類rasterio.features
的用法示例。
在下文中一共展示了features.shapes方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: union
# 需要導入模塊: from rasterio import features [as 別名]
# 或者: from rasterio.features import shapes [as 別名]
def union(inputtiles, parsenames):
tiles = sutils.tile_parser(inputtiles, parsenames)
xmin, xmax, ymin, ymax = sutils.get_range(tiles)
zoom = sutils.get_zoom(tiles)
# make an array of shape (xrange + 3, yrange + 3)
burn = sutils.burnXYZs(tiles, xmin, xmax, ymin, ymax, 0)
nw = mercantile.xy(*mercantile.ul(xmin, ymin, zoom))
se = mercantile.xy(*mercantile.ul(xmax + 1, ymax + 1, zoom))
aff = Affine(((se[0] - nw[0]) / float(xmax - xmin + 1)), 0.0, nw[0],
0.0, -((nw[1] - se[1]) / float(ymax - ymin + 1)), nw[1])
unprojecter = sutils.Unprojecter()
unionedTiles = [
{
'geometry': unprojecter.unproject(feature),
'properties': {},
'type': 'Feature'
} for feature, shapes in features.shapes(np.asarray(np.flipud(np.rot90(burn)).astype(np.uint8), order='C'), transform=aff) if shapes == 1
]
return unionedTiles
示例2: crowns_to_polys_raster
# 需要導入模塊: from rasterio import features [as 別名]
# 或者: from rasterio.features import shapes [as 別名]
def crowns_to_polys_raster(self):
''' Converts tree crown raster to individual polygons and stores them
in the tree dataframe
'''
polys = []
for feature in rioshapes(self.crowns, mask=self.crowns.astype(bool)):
# Convert pixel coordinates to lon/lat
edges = feature[0]['coordinates'][0].copy()
for i in range(len(edges)):
edges[i] = self._to_lonlat(*edges[i], self.resolution)
# poly_smooth = self.smooth_poly(Polygon(edges), s=None, k=9)
polys.append(Polygon(edges))
self.trees.crown_poly_raster = polys
示例3: _compute_image_stats_chunked
# 需要導入模塊: from rasterio import features [as 別名]
# 或者: from rasterio.features import shapes [as 別名]
def _compute_image_stats_chunked(dataset: 'DatasetReader') -> Optional[Dict[str, Any]]:
"""Compute statistics for the given rasterio dataset by looping over chunks."""
from rasterio import features, warp, windows
from shapely import geometry
total_count = valid_data_count = 0
tdigest = TDigest()
sstats = SummaryStats()
convex_hull = geometry.Polygon()
block_windows = [w for _, w in dataset.block_windows(1)]
for w in block_windows:
with warnings.catch_warnings():
warnings.filterwarnings('ignore', message='invalid value encountered.*')
block_data = dataset.read(1, window=w, masked=True)
total_count += int(block_data.size)
valid_data = block_data.compressed()
if valid_data.size == 0:
continue
valid_data_count += int(valid_data.size)
if np.any(block_data.mask):
hull_candidates = RasterDriver._hull_candidate_mask(~block_data.mask)
hull_shapes = [geometry.shape(s) for s, _ in features.shapes(
np.ones(hull_candidates.shape, 'uint8'),
mask=hull_candidates,
transform=windows.transform(w, dataset.transform)
)]
else:
w, s, e, n = windows.bounds(w, dataset.transform)
hull_shapes = [geometry.Polygon([(w, s), (e, s), (e, n), (w, n)])]
convex_hull = geometry.MultiPolygon([convex_hull, *hull_shapes]).convex_hull
tdigest.update(valid_data)
sstats.update(valid_data)
if sstats.count() == 0:
return None
convex_hull_wgs = warp.transform_geom(
dataset.crs, 'epsg:4326', geometry.mapping(convex_hull)
)
return {
'valid_percentage': valid_data_count / total_count * 100,
'range': (sstats.min(), sstats.max()),
'mean': sstats.mean(),
'stdev': sstats.std(),
'percentiles': tdigest.quantile(np.arange(0.01, 1, 0.01)),
'convex_hull': convex_hull_wgs
}
示例4: _compute_image_stats
# 需要導入模塊: from rasterio import features [as 別名]
# 或者: from rasterio.features import shapes [as 別名]
def _compute_image_stats(dataset: 'DatasetReader',
max_shape: Sequence[int] = None) -> Optional[Dict[str, Any]]:
"""Compute statistics for the given rasterio dataset by reading it into memory."""
from rasterio import features, warp, transform
from shapely import geometry
out_shape = (dataset.height, dataset.width)
if max_shape is not None:
out_shape = (
min(max_shape[0], out_shape[0]),
min(max_shape[1], out_shape[1])
)
data_transform = transform.from_bounds(
*dataset.bounds, height=out_shape[0], width=out_shape[1]
)
raster_data = dataset.read(1, out_shape=out_shape, masked=True)
if dataset.nodata is not None:
# nodata values might slip into output array if out_shape < dataset.shape
raster_data[raster_data == dataset.nodata] = np.ma.masked
valid_data = raster_data.compressed()
if valid_data.size == 0:
return None
if np.any(raster_data.mask):
hull_candidates = RasterDriver._hull_candidate_mask(~raster_data.mask)
hull_shapes = (geometry.shape(s) for s, _ in features.shapes(
np.ones(hull_candidates.shape, 'uint8'),
mask=hull_candidates,
transform=data_transform
))
convex_hull = geometry.MultiPolygon(hull_shapes).convex_hull
else:
# no masked entries -> convex hull == dataset bounds
w, s, e, n = dataset.bounds
convex_hull = geometry.Polygon([(w, s), (e, s), (e, n), (w, n)])
convex_hull_wgs = warp.transform_geom(
dataset.crs, 'epsg:4326', geometry.mapping(convex_hull)
)
return {
'valid_percentage': valid_data.size / raster_data.size * 100,
'range': (float(valid_data.min()), float(valid_data.max())),
'mean': float(valid_data.mean()),
'stdev': float(valid_data.std()),
'percentiles': np.percentile(valid_data, np.arange(1, 100)),
'convex_hull': convex_hull_wgs
}