本文整理匯總了Python中rasa_nlu.training_data.load_data方法的典型用法代碼示例。如果您正苦於以下問題:Python training_data.load_data方法的具體用法?Python training_data.load_data怎麽用?Python training_data.load_data使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類rasa_nlu.training_data
的用法示例。
在下文中一共展示了training_data.load_data方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: train_model
# 需要導入模塊: from rasa_nlu import training_data [as 別名]
# 或者: from rasa_nlu.training_data import load_data [as 別名]
def train_model():
# trains a model and times it
t = time()
# training_data = load_data('demo_train.md')
training_data = load_data("data/company_train_lookup.json")
td_load_time = time() - t
trainer = Trainer(config.load("config.yaml"))
t = time()
trainer.train(training_data)
train_time = time() - t
clear_model_dir()
t = time()
model_directory = trainer.persist(
"./tmp/models"
) # Returns the directory the model is stored in
persist_time = time() - t
return td_load_time, train_time, persist_time
示例2: train_dialogue
# 需要導入模塊: from rasa_nlu import training_data [as 別名]
# 或者: from rasa_nlu.training_data import load_data [as 別名]
def train_dialogue(domain_file="domain.yml",
model_path="models/dialogue",
training_data_file="data/stories.md"):
agent = Agent(domain_file,
policies=[MemoizationPolicy(max_history=3),
MappingPolicy(),
RestaurantPolicy(batch_size=100, epochs=400,
validation_split=0.2)])
training_data = await agent.load_data(training_data_file)
agent.train(
training_data
)
agent.persist(model_path)
return agent
示例3: test_interpreter
# 需要導入模塊: from rasa_nlu import training_data [as 別名]
# 或者: from rasa_nlu.training_data import load_data [as 別名]
def test_interpreter(pipeline_template, component_builder, tmpdir):
test_data = "data/examples/rasa/demo-rasa.json"
_conf = utilities.base_test_conf(pipeline_template)
_conf["data"] = test_data
td = training_data.load_data(test_data)
interpreter = utilities.interpreter_for(component_builder,
"data/examples/rasa/demo-rasa.json",
tmpdir.strpath,
_conf)
texts = ["good bye", "i am looking for an indian spot"]
for text in texts:
result = interpreter.parse(text, time=None)
assert result['text'] == text
assert (not result['intent']['name'] or
result['intent']['name'] in td.intents)
assert result['intent']['confidence'] >= 0
# Ensure the model doesn't detect entity types that are not present
# Models on our test data set are not stable enough to
# require the exact entities to be found
for entity in result['entities']:
assert entity['entity'] in td.entities
示例4: test_dialogflow_data
# 需要導入模塊: from rasa_nlu import training_data [as 別名]
# 或者: from rasa_nlu.training_data import load_data [as 別名]
def test_dialogflow_data():
td = training_data.load_data('data/examples/dialogflow/')
assert len(td.entity_examples) == 5
assert len(td.intent_examples) == 24
assert len(td.training_examples) == 24
assert len(td.lookup_tables) == 2
assert td.intents == {"affirm", "goodbye", "hi", "inform"}
assert td.entities == {"cuisine", "location"}
non_trivial_synonyms = {k: v
for k, v in td.entity_synonyms.items() if k != v}
assert non_trivial_synonyms == {"mexico": "mexican",
"china": "chinese",
"india": "indian"}
# The order changes based on different computers hence the grouping
assert {td.lookup_tables[0]['name'],
td.lookup_tables[1]['name']} == {'location', 'cuisine'}
assert {len(td.lookup_tables[0]['elements']),
len(td.lookup_tables[1]['elements'])} == {4, 6}
示例5: test_spacy_featurizer_casing
# 需要導入模塊: from rasa_nlu import training_data [as 別名]
# 或者: from rasa_nlu.training_data import load_data [as 別名]
def test_spacy_featurizer_casing(spacy_nlp):
from rasa_nlu.featurizers import spacy_featurizer
# if this starts failing for the default model, we should think about
# removing the lower casing the spacy nlp component does when it
# retrieves vectors. For compressed spacy models (e.g. models
# ending in _sm) this test will most likely fail.
td = training_data.load_data('data/examples/rasa/demo-rasa.json')
for e in td.intent_examples:
doc = spacy_nlp(e.text)
doc_capitalized = spacy_nlp(e.text.capitalize())
vecs = spacy_featurizer.features_for_doc(doc)
vecs_capitalized = spacy_featurizer.features_for_doc(doc_capitalized)
assert np.allclose(vecs, vecs_capitalized, atol=1e-5), \
"Vectors are unequal for texts '{}' and '{}'".format(
e.text, e.text.capitalize())
示例6: test_interpreter
# 需要導入模塊: from rasa_nlu import training_data [as 別名]
# 或者: from rasa_nlu.training_data import load_data [as 別名]
def test_interpreter(pipeline_template, component_builder, tmpdir):
test_data = "data/examples/rasa/demo-rasa.json"
_conf = utilities.base_test_conf(pipeline_template)
_conf["data"] = test_data
td = training_data.load_data(test_data)
interpreter = utilities.interpreter_for(component_builder,
"data/examples/rasa/demo-rasa.json",
tmpdir.strpath,
_conf)
texts = ["good bye", "i am looking for an indian spot"]
for text in texts:
result = interpreter.parse(text, time=None)
assert result['text'] == text
assert (not result['intent']['name']
or result['intent']['name'] in td.intents)
assert result['intent']['confidence'] >= 0
# Ensure the model doesn't detect entity types that are not present
# Models on our test data set are not stable enough to
# require the exact entities to be found
for entity in result['entities']:
assert entity['entity'] in td.entities
示例7: train_models
# 需要導入模塊: from rasa_nlu import training_data [as 別名]
# 或者: from rasa_nlu.training_data import load_data [as 別名]
def train_models(component_builder, data):
# Retrain different multitenancy models
def train(cfg_name, project_name):
from rasa_nlu.train import create_persistor
from rasa_nlu import training_data
cfg = config.load(cfg_name)
trainer = Trainer(cfg, component_builder)
training_data = training_data.load_data(data)
trainer.train(training_data)
trainer.persist("test_projects", project_name=project_name)
train("sample_configs/config_spacy.yml", "test_project_spacy_sklearn")
train("sample_configs/config_mitie.yml", "test_project_mitie")
train("sample_configs/config_mitie_sklearn.yml", "test_project_mitie_sklearn")
示例8: test_demo_data
# 需要導入模塊: from rasa_nlu import training_data [as 別名]
# 或者: from rasa_nlu.training_data import load_data [as 別名]
def test_demo_data(filename):
td = training_data.load_data(filename)
assert td.intents == {"affirm", "greet", "restaurant_search", "goodbye"}
assert td.entities == {"location", "cuisine"}
assert len(td.training_examples) == 42
assert len(td.intent_examples) == 42
assert len(td.entity_examples) == 11
assert td.entity_synonyms == {'Chines': 'chinese',
'Chinese': 'chinese',
'chines': 'chinese',
'vegg': 'vegetarian',
'veggie': 'vegetarian'}
assert td.regex_features == [{"name": "greet", "pattern": "hey[^\s]*"},
{"name": "zipcode", "pattern": "[0-9]{5}"}]
示例9: test_spacy_featurizer_casing
# 需要導入模塊: from rasa_nlu import training_data [as 別名]
# 或者: from rasa_nlu.training_data import load_data [as 別名]
def test_spacy_featurizer_casing(spacy_nlp):
from rasa_nlu.featurizers import spacy_featurizer
# if this starts failing for the default model, we should think about
# removing the lower casing the spacy nlp component does when it
# retrieves vectors. For compressed spacy models (e.g. models
# ending in _sm) this test will most likely fail.
td = training_data.load_data('data/examples/rasa/demo-rasa.json')
for e in td.intent_examples:
doc = spacy_nlp(e.text)
doc_capitalized = spacy_nlp(e.text.capitalize())
vecs = spacy_featurizer.features_for_doc(doc)
vecs_capitalized = spacy_featurizer.features_for_doc(doc_capitalized)
assert np.allclose(vecs, vecs_capitalized, atol=1e-5), \
"Vectors are unequal for texts '{}' and '{}'".format(
e.text, e.text.capitalize())
示例10: train_dialogue
# 需要導入模塊: from rasa_nlu import training_data [as 別名]
# 或者: from rasa_nlu.training_data import load_data [as 別名]
def train_dialogue(
domain_file="domain.yml",
model_path="models/dialogue",
training_data_file="data/stories.md"
):
agent = Agent(
domain_file,
policies=[MemoizationPolicy(max_history=3), KerasPolicy()]
)
training_data = agent.load_data(training_data_file)
agent.train(
training_data,
epochs=400,
batch_size=100,
validation_split=0.2
)
agent.persist(model_path)
return agent
示例11: train_nlu
# 需要導入模塊: from rasa_nlu import training_data [as 別名]
# 或者: from rasa_nlu.training_data import load_data [as 別名]
def train_nlu():
from rasa_nlu.training_data import load_data
from rasa_nlu import config
from rasa_nlu.model import Trainer
training_data = load_data('data/nlu.md')
trainer = Trainer(config.load("config.yml"))
trainer.train(training_data)
model_directory = trainer.persist('models/nlu/',
fixed_model_name="current")
return model_directory
示例12: visualize
# 需要導入模塊: from rasa_nlu import training_data [as 別名]
# 或者: from rasa_nlu.training_data import load_data [as 別名]
def visualize(config_path: Text, domain_path: Text, stories_path: Text,
nlu_data_path: Text, output_path: Text, max_history: int):
from rasa.core.agent import Agent
from rasa.core import config
policies = config.load(config_path)
agent = Agent(domain_path, policies=policies)
# this is optional, only needed if the `/greet` type of
# messages in the stories should be replaced with actual
# messages (e.g. `hello`)
if nlu_data_path is not None:
from rasa_nlu.training_data import load_data
nlu_data_path = load_data(nlu_data_path)
else:
nlu_data_path = None
logger.info("Starting to visualize stories...")
await agent.visualize(stories_path, output_path,
max_history,
nlu_training_data=nlu_data_path)
full_output_path = "file://{}".format(os.path.abspath(output_path))
logger.info("Finished graph creation. Saved into {}".format(
full_output_path))
import webbrowser
webbrowser.open(full_output_path)
示例13: convert_training_data
# 需要導入模塊: from rasa_nlu import training_data [as 別名]
# 或者: from rasa_nlu.training_data import load_data [as 別名]
def convert_training_data(data_file, out_file, output_format, language):
td = training_data.load_data(data_file, language)
if output_format == 'md':
output = td.as_markdown()
else:
output = td.as_json(indent=2)
write_to_file(out_file, output)
示例14: train
# 需要導入模塊: from rasa_nlu import training_data [as 別名]
# 或者: from rasa_nlu.training_data import load_data [as 別名]
def train(nlu_config: Union[Text, RasaNLUModelConfig],
data: Text,
path: Optional[Text] = None,
project: Optional[Text] = None,
fixed_model_name: Optional[Text] = None,
storage: Optional[Text] = None,
component_builder: Optional[ComponentBuilder] = None,
training_data_endpoint: Optional[EndpointConfig] = None,
**kwargs: Any
) -> Tuple[Trainer, Interpreter, Text]:
"""Loads the trainer and the data and runs the training of the model."""
if isinstance(nlu_config, str):
nlu_config = config.load(nlu_config)
# Ensure we are training a model that we can save in the end
# WARN: there is still a race condition if a model with the same name is
# trained in another subprocess
trainer = Trainer(nlu_config, component_builder)
persistor = create_persistor(storage)
if training_data_endpoint is not None:
training_data = load_data_from_endpoint(training_data_endpoint,
nlu_config.language)
else:
training_data = load_data(data, nlu_config.language)
interpreter = trainer.train(training_data, **kwargs)
if path:
persisted_path = trainer.persist(path,
persistor,
project,
fixed_model_name)
else:
persisted_path = None
return trainer, interpreter, persisted_path
示例15: test_luis_data
# 需要導入模塊: from rasa_nlu import training_data [as 別名]
# 或者: from rasa_nlu.training_data import load_data [as 別名]
def test_luis_data():
td = training_data.load_data('data/examples/luis/demo-restaurants.json')
assert len(td.entity_examples) == 8
assert len(td.intent_examples) == 28
assert len(td.training_examples) == 28
assert td.entity_synonyms == {}
assert td.intents == {"affirm", "goodbye", "greet", "inform"}
assert td.entities == {"location", "cuisine"}