當前位置: 首頁>>代碼示例>>Python>>正文


Python random.vonmisesvariate方法代碼示例

本文整理匯總了Python中random.vonmisesvariate方法的典型用法代碼示例。如果您正苦於以下問題:Python random.vonmisesvariate方法的具體用法?Python random.vonmisesvariate怎麽用?Python random.vonmisesvariate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在random的用法示例。


在下文中一共展示了random.vonmisesvariate方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_zeroinputs

# 需要導入模塊: import random [as 別名]
# 或者: from random import vonmisesvariate [as 別名]
def test_zeroinputs(self):
        # Verify that distributions can handle a series of zero inputs'
        g = random.Random()
        x = [g.random() for i in xrange(50)] + [0.0]*5
        g.random = x[:].pop; g.uniform(1,10)
        g.random = x[:].pop; g.paretovariate(1.0)
        g.random = x[:].pop; g.expovariate(1.0)
        g.random = x[:].pop; g.weibullvariate(1.0, 1.0)
        g.random = x[:].pop; g.vonmisesvariate(1.0, 1.0)
        g.random = x[:].pop; g.normalvariate(0.0, 1.0)
        g.random = x[:].pop; g.gauss(0.0, 1.0)
        g.random = x[:].pop; g.lognormvariate(0.0, 1.0)
        g.random = x[:].pop; g.vonmisesvariate(0.0, 1.0)
        g.random = x[:].pop; g.gammavariate(0.01, 1.0)
        g.random = x[:].pop; g.gammavariate(1.0, 1.0)
        g.random = x[:].pop; g.gammavariate(200.0, 1.0)
        g.random = x[:].pop; g.betavariate(3.0, 3.0)
        g.random = x[:].pop; g.triangular(0.0, 1.0, 1.0/3.0) 
開發者ID:IronLanguages,項目名稱:ironpython2,代碼行數:20,代碼來源:test_random.py

示例2: test_constant

# 需要導入模塊: import random [as 別名]
# 或者: from random import vonmisesvariate [as 別名]
def test_constant(self):
        g = random.Random()
        N = 100
        for variate, args, expected in [
                (g.uniform, (10.0, 10.0), 10.0),
                (g.triangular, (10.0, 10.0), 10.0),
                (g.triangular, (10.0, 10.0, 10.0), 10.0),
                (g.expovariate, (float('inf'),), 0.0),
                (g.vonmisesvariate, (3.0, float('inf')), 3.0),
                (g.gauss, (10.0, 0.0), 10.0),
                (g.lognormvariate, (0.0, 0.0), 1.0),
                (g.lognormvariate, (-float('inf'), 0.0), 0.0),
                (g.normalvariate, (10.0, 0.0), 10.0),
                (g.paretovariate, (float('inf'),), 1.0),
                (g.weibullvariate, (10.0, float('inf')), 10.0),
                (g.weibullvariate, (0.0, 10.0), 0.0),
            ]:
            for i in range(N):
                self.assertEqual(variate(*args), expected) 
開發者ID:IronLanguages,項目名稱:ironpython2,代碼行數:21,代碼來源:test_random.py

示例3: test_constant

# 需要導入模塊: import random [as 別名]
# 或者: from random import vonmisesvariate [as 別名]
def test_constant(self):
        g = random.Random()
        N = 100
        for variate, args, expected in [
                (g.uniform, (10.0, 10.0), 10.0),
                (g.triangular, (10.0, 10.0), 10.0),
                #(g.triangular, (10.0, 10.0, 10.0), 10.0),
                (g.expovariate, (float('inf'),), 0.0),
                (g.vonmisesvariate, (3.0, float('inf')), 3.0),
                (g.gauss, (10.0, 0.0), 10.0),
                (g.lognormvariate, (0.0, 0.0), 1.0),
                (g.lognormvariate, (-float('inf'), 0.0), 0.0),
                (g.normalvariate, (10.0, 0.0), 10.0),
                (g.paretovariate, (float('inf'),), 1.0),
                (g.weibullvariate, (10.0, float('inf')), 10.0),
                (g.weibullvariate, (0.0, 10.0), 0.0),
            ]:
            for i in range(N):
                self.assertEqual(variate(*args), expected) 
開發者ID:dxwu,項目名稱:BinderFilter,代碼行數:21,代碼來源:test_random.py

示例4: test_zeroinputs

# 需要導入模塊: import random [as 別名]
# 或者: from random import vonmisesvariate [as 別名]
def test_zeroinputs(self):
        # Verify that distributions can handle a series of zero inputs'
        g = random.Random()
        x = [g.random() for i in range(50)] + [0.0]*5
        g.random = x[:].pop; g.uniform(1,10)
        g.random = x[:].pop; g.paretovariate(1.0)
        g.random = x[:].pop; g.expovariate(1.0)
        g.random = x[:].pop; g.weibullvariate(1.0, 1.0)
        g.random = x[:].pop; g.vonmisesvariate(1.0, 1.0)
        g.random = x[:].pop; g.normalvariate(0.0, 1.0)
        g.random = x[:].pop; g.gauss(0.0, 1.0)
        g.random = x[:].pop; g.lognormvariate(0.0, 1.0)
        g.random = x[:].pop; g.vonmisesvariate(0.0, 1.0)
        g.random = x[:].pop; g.gammavariate(0.01, 1.0)
        g.random = x[:].pop; g.gammavariate(1.0, 1.0)
        g.random = x[:].pop; g.gammavariate(200.0, 1.0)
        g.random = x[:].pop; g.betavariate(3.0, 3.0)
        g.random = x[:].pop; g.triangular(0.0, 1.0, 1.0/3.0) 
開發者ID:Microvellum,項目名稱:Fluid-Designer,代碼行數:20,代碼來源:test_random.py

示例5: get_dist

# 需要導入模塊: import random [as 別名]
# 或者: from random import vonmisesvariate [as 別名]
def get_dist(d):
    return {
        'randrange': random.randrange, # start, stop, step
        'randint': random.randint, # a, b
        'random': random.random,
        'uniform': random, # a, b
        'triangular': random.triangular, # low, high, mode
        'beta': random.betavariate, # alpha, beta
        'expo': random.expovariate, # lambda
        'gamma': random.gammavariate, # alpha, beta
        'gauss': random.gauss, # mu, sigma
        'lognorm': random.lognormvariate, # mu, sigma
        'normal': random.normalvariate, # mu, sigma
        'vonmises': random.vonmisesvariate, # mu, kappa
        'pareto': random.paretovariate, # alpha
        'weibull': random.weibullvariate # alpha, beta
    }.get(d) 
開發者ID:cerob,項目名稱:slicesim,代碼行數:19,代碼來源:__main__.py

示例6: test_avg_std

# 需要導入模塊: import random [as 別名]
# 或者: from random import vonmisesvariate [as 別名]
def test_avg_std(self):
        # Use integration to test distribution average and standard deviation.
        # Only works for distributions which do not consume variates in pairs
        g = random.Random()
        N = 5000
        x = [i/float(N) for i in xrange(1,N)]
        for variate, args, mu, sigmasqrd in [
                (g.uniform, (1.0,10.0), (10.0+1.0)/2, (10.0-1.0)**2/12),
                (g.triangular, (0.0, 1.0, 1.0/3.0), 4.0/9.0, 7.0/9.0/18.0),
                (g.expovariate, (1.5,), 1/1.5, 1/1.5**2),
                (g.vonmisesvariate, (1.23, 0), pi, pi**2/3),
                (g.paretovariate, (5.0,), 5.0/(5.0-1),
                                  5.0/((5.0-1)**2*(5.0-2))),
                (g.weibullvariate, (1.0, 3.0), gamma(1+1/3.0),
                                  gamma(1+2/3.0)-gamma(1+1/3.0)**2) ]:
            g.random = x[:].pop
            y = []
            for i in xrange(len(x)):
                try:
                    y.append(variate(*args))
                except IndexError:
                    pass
            s1 = s2 = 0
            for e in y:
                s1 += e
                s2 += (e - mu) ** 2
            N = len(y)
            self.assertAlmostEqual(s1/N, mu, places=2,
                                   msg='%s%r' % (variate.__name__, args))
            self.assertAlmostEqual(s2/(N-1), sigmasqrd, places=2,
                                   msg='%s%r' % (variate.__name__, args)) 
開發者ID:IronLanguages,項目名稱:ironpython2,代碼行數:33,代碼來源:test_random.py

示例7: test_von_mises_range

# 需要導入模塊: import random [as 別名]
# 或者: from random import vonmisesvariate [as 別名]
def test_von_mises_range(self):
        # Issue 17149: von mises variates were not consistently in the
        # range [0, 2*PI].
        g = random.Random()
        N = 100
        for mu in 0.0, 0.1, 3.1, 6.2:
            for kappa in 0.0, 2.3, 500.0:
                for _ in range(N):
                    sample = g.vonmisesvariate(mu, kappa)
                    self.assertTrue(
                        0 <= sample <= random.TWOPI,
                        msg=("vonmisesvariate({}, {}) produced a result {} out"
                             " of range [0, 2*pi]").format(mu, kappa, sample)) 
開發者ID:IronLanguages,項目名稱:ironpython2,代碼行數:15,代碼來源:test_random.py

示例8: test_von_mises_large_kappa

# 需要導入模塊: import random [as 別名]
# 或者: from random import vonmisesvariate [as 別名]
def test_von_mises_large_kappa(self):
        # Issue #17141: vonmisesvariate() was hang for large kappas
        random.vonmisesvariate(0, 1e15)
        random.vonmisesvariate(0, 1e100) 
開發者ID:IronLanguages,項目名稱:ironpython2,代碼行數:6,代碼來源:test_random.py

示例9: test_avg_std

# 需要導入模塊: import random [as 別名]
# 或者: from random import vonmisesvariate [as 別名]
def test_avg_std(self):
        # Use integration to test distribution average and standard deviation.
        # Only works for distributions which do not consume variates in pairs
        g = random.Random()
        N = 5000
        x = [i/float(N) for i in range(1,N)]
        for variate, args, mu, sigmasqrd in [
                (g.uniform, (1.0,10.0), (10.0+1.0)/2, (10.0-1.0)**2/12),
                (g.triangular, (0.0, 1.0, 1.0/3.0), 4.0/9.0, 7.0/9.0/18.0),
                (g.expovariate, (1.5,), 1/1.5, 1/1.5**2),
                (g.vonmisesvariate, (1.23, 0), pi, pi**2/3),
                (g.paretovariate, (5.0,), 5.0/(5.0-1),
                                  5.0/((5.0-1)**2*(5.0-2))),
                (g.weibullvariate, (1.0, 3.0), gamma(1+1/3.0),
                                  gamma(1+2/3.0)-gamma(1+1/3.0)**2) ]:
            g.random = x[:].pop
            y = []
            for i in range(len(x)):
                try:
                    y.append(variate(*args))
                except IndexError:
                    pass
            s1 = s2 = 0
            for e in y:
                s1 += e
                s2 += (e - mu) ** 2
            N = len(y)
            self.assertAlmostEqual(s1/N, mu, places=2,
                                   msg='%s%r' % (variate.__name__, args))
            self.assertAlmostEqual(s2/(N-1), sigmasqrd, places=2,
                                   msg='%s%r' % (variate.__name__, args)) 
開發者ID:Microvellum,項目名稱:Fluid-Designer,代碼行數:33,代碼來源:test_random.py


注:本文中的random.vonmisesvariate方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。