本文整理匯總了Python中random.randrange方法的典型用法代碼示例。如果您正苦於以下問題:Python random.randrange方法的具體用法?Python random.randrange怎麽用?Python random.randrange使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類random
的用法示例。
在下文中一共展示了random.randrange方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: add_token
# 需要導入模塊: import random [as 別名]
# 或者: from random import randrange [as 別名]
def add_token(request: LocalProxy, session: Session) -> str:
"""
Create a new token for the user or return a
valid existing token to the user.
"""
token = None
id_ = int(request.authorization['username'])
try:
token = session.query(Token).filter(Token.user_id == id_).one()
if not token.is_valid():
update_token = '%030x' % randrange(16**30)
token.id = update_token
token.timestamp = datetime.now()
session.commit()
except NoResultFound:
token = '%030x' % randrange(16**30)
new_token = Token(user_id=id_, id=token)
session.add(new_token)
session.commit()
return token
return token.id
示例2: choose_random_photo
# 需要導入模塊: import random [as 別名]
# 或者: from random import randrange [as 別名]
def choose_random_photo(self, album):
photo = {}
photos_url = PHOTOS_URL % {'username':self.username, 'albumid':album['id']}
response = utils.http_request(photos_url).get('response')
if response:
content = json.loads(response.read().decode('utf-8'))
numphotos = utils.rget(content, 'feed.gphoto$numphotos.$t')
if numphotos:
diceroll = random.randrange(numphotos)
entry = utils.rget(content, 'feed.entry')[diceroll]
photo['id'] = entry['gphoto$id']['$t']
photo['url'] = entry['content']['src']
photo['title'] = utils.rget(entry, 'title.$t')
photo['summary'] = utils.rget(entry, 'summary.$t')
photo['timestamp'] = utils.rget(entry, 'gphoto$timestamp.$t')
photo['published'] = utils.rget(entry, 'published.$t')
photo['width'] = utils.rget(entry, 'gphoto$width.$t')
photo['height'] = utils.rget(entry, 'gphoto$height.$t')
photo['size'] = int(utils.rget(entry, 'gphoto$size.$t', 0))
photo['credit'] = ', '.join([item['$t'] for item in utils.rget(entry, 'media$group.media$credit')])
for tag, value in utils.rget(entry, 'exif$tags').items():
tagstr = tag.replace('exif$', '')
photo[tagstr] = value['$t']
return photo
示例3: step
# 需要導入模塊: import random [as 別名]
# 或者: from random import randrange [as 別名]
def step(self, amt=1):
self.layout.all_off()
if self.pulse_speed == 0 and random.randrange(0, 100) <= self.chance:
self.add_pulse()
if self.pulse_speed > 0:
self.layout.set(self.pulse_position, self.pulse_color)
for i in range(self._tail):
c = color_scale(self.pulse_color, 255 - (self._fadeAmt * i))
self.layout.set(self.pulse_position - i, c)
self.layout.set(self.pulse_position + i, c)
if self.pulse_position > self._size + self._tail:
self.pulse_speed = 0
else:
self.pulse_position += self.pulse_speed
示例4: step
# 需要導入模塊: import random [as 別名]
# 或者: from random import randrange [as 別名]
def step(self, amt=1):
self.layout.all_off()
for i in range(self._growthRate):
newTail = random.randrange(0, 360, self._angleDiff)
color = random.choice(self.palette)
self._tails[newTail].append((0, color))
for a in range(360):
angle = self._tails[a]
if len(angle) > 0:
removals = []
for r in range(len(angle)):
tail = angle[r]
if tail[0] <= self.lastRing:
self._drawTail(a, tail[0], tail[1])
if tail[0] - (self._tail - 1) <= self.lastRing:
tail = (tail[0] + amt, tail[1])
self._tails[a][r] = tail
else:
removals.append(tail)
for r in removals:
self._tails[a].remove(r)
self._step = 0
示例5: sample_doc
# 需要導入模塊: import random [as 別名]
# 或者: from random import randrange [as 別名]
def sample_doc(self, current_idx, sentence_weighted=True):
# Uses the current iteration counter to ensure we don't sample the same doc twice
if sentence_weighted:
# With sentence weighting, we sample docs proportionally to their sentence length
if self.doc_cumsum is None or len(self.doc_cumsum) != len(self.doc_lengths):
self._precalculate_doc_weights()
rand_start = self.doc_cumsum[current_idx]
rand_end = rand_start + self.cumsum_max - self.doc_lengths[current_idx]
sentence_index = randrange(rand_start, rand_end) % self.cumsum_max
sampled_doc_index = np.searchsorted(self.doc_cumsum, sentence_index, side='right')
else:
# If we don't use sentence weighting, then every doc has an equal chance to be chosen
sampled_doc_index = (current_idx + randrange(1, len(self.doc_lengths))) % len(self.doc_lengths)
assert sampled_doc_index != current_idx
if self.reduce_memory:
return self.document_shelf[str(sampled_doc_index)]
else:
return self.documents[sampled_doc_index]
示例6: select_action
# 需要導入模塊: import random [as 別名]
# 或者: from random import randrange [as 別名]
def select_action(self, state):
"""
The action selection function, it either uses the model to choose an action or samples one uniformly.
:param state: current state of the model
:return:
"""
if self.cuda:
state = state.cuda()
sample = random.random()
eps_threshold = self.config.eps_start + (self.config.eps_start - self.config.eps_end) * math.exp(
-1. * self.current_iteration / self.config.eps_decay)
self.current_iteration += 1
if sample > eps_threshold:
with torch.no_grad():
return self.policy_model(state).max(1)[1].view(1, 1)
else:
return torch.tensor([[random.randrange(2)]], device=self.device, dtype=torch.long)
示例7: random_expr
# 需要導入模塊: import random [as 別名]
# 或者: from random import randrange [as 別名]
def random_expr(depth, vlist, ops):
"""Generate a random expression tree.
Args:
depth: At least one leaf will be this many levels down from the top.
vlist: A list of chars. These chars are randomly selected as leaf values.
ops: A list of ExprOp instances.
Returns:
An ExprNode instance which is the root of the generated expression tree.
"""
if not depth:
return str(vlist[random.randrange(len(vlist))])
max_depth_side = random.randrange(2)
other_side_depth = random.randrange(depth)
left = random_expr(depth - 1
if max_depth_side else other_side_depth, vlist, ops)
right = random_expr(depth - 1
if not max_depth_side else other_side_depth, vlist, ops)
op = ops[random.randrange(len(ops))]
return ExprNode(left, right, op)
示例8: generate_algebra_simplify_sample
# 需要導入模塊: import random [as 別名]
# 或者: from random import randrange [as 別名]
def generate_algebra_simplify_sample(vlist, ops, min_depth, max_depth):
"""Randomly generate an algebra simplify dataset sample.
Given an input expression, produce the simplified expression.
See go/symbolic-math-dataset.
Args:
vlist: Variable list. List of chars that can be used in the expression.
ops: List of ExprOp instances. The allowed operators for the expression.
min_depth: Expression trees will not have a smaller depth than this. 0 means
there is just a variable. 1 means there is one operation.
max_depth: Expression trees will not have a larger depth than this. To make
all trees have the same depth, set this equal to `min_depth`.
Returns:
sample: String representation of the input.
target: String representation of the solution.
"""
depth = random.randrange(min_depth, max_depth + 1)
expr = random_expr(depth, vlist, ops)
sample = str(expr)
target = format_sympy_expr(sympy.simplify(sample))
return sample, target
示例9: datetime
# 需要導入模塊: import random [as 別名]
# 或者: from random import randrange [as 別名]
def datetime(self, field=None, val=None):
"""
Returns a random datetime. If 'val' is passed, a datetime within two
years of that date will be returned.
"""
if val is None:
def source():
tzinfo = get_default_timezone() if settings.USE_TZ else None
return datetime.fromtimestamp(randrange(1, 2100000000),
tzinfo)
else:
def source():
tzinfo = get_default_timezone() if settings.USE_TZ else None
return datetime.fromtimestamp(int(val.strftime("%s")) +
randrange(-365*24*3600*2, 365*24*3600*2),
tzinfo)
return self.get_allowed_value(source, field)
示例10: bench
# 需要導入模塊: import random [as 別名]
# 或者: from random import randrange [as 別名]
def bench():
n = 8
w = 4
a0, a1, a2, a3, a4, a5, a6, a7 = inputs = [Signal(intbv(0)[w:]) for i in range(n)]
z0, z1, z2, z3, z4, z5, z6, z7 = outputs = [Signal(intbv(0)[w:]) for i in range(n)]
inst = Array8Sorter_v(a0, a1, a2, a3, a4, a5, a6, a7,
z0, z1, z2, z3, z4, z5, z6, z7)
@instance
def check():
for i in range(100):
data = [randrange(2**w) for i in range(n)]
for i in range(n):
inputs[i].next = data[i]
yield delay(10)
data.sort()
assert data == outputs
return inst, check
示例11: bench
# 需要導入模塊: import random [as 別名]
# 或者: from random import randrange [as 別名]
def bench():
led = Signal(intbv(0)[7:])
bcd = Signal(intbv(0)[4:])
clock = Signal(bool(0))
dut = bcd2led(led, bcd, clock)
@always(delay(PERIOD//2))
def clkgen():
clock.next = not clock
@instance
def check():
for i in range(100):
bcd.next = randrange(10)
yield clock.posedge
yield clock.negedge
expected = int(seven_segment.encoding[int(bcd)], 2)
assert led == expected
raise StopSimulation
return dut, clkgen, check
示例12: test_dffa
# 需要導入模塊: import random [as 別名]
# 或者: from random import randrange [as 別名]
def test_dffa():
q, d, clk, rst = [Signal(bool(0)) for i in range(4)]
dffa_inst = dffa(q, d, clk, rst)
@always(delay(10))
def clkgen():
clk.next = not clk
@always(clk.negedge)
def stimulus():
d.next = randrange(2)
@instance
def rstgen():
yield delay(5)
rst.next = 1
while True:
yield delay(randrange(500, 1000))
rst.next = 0
yield delay(randrange(80, 140))
rst.next = 1
return dffa_inst, clkgen, stimulus, rstgen
示例13: LoopBench
# 需要導入模塊: import random [as 別名]
# 或者: from random import randrange [as 別名]
def LoopBench(LoopTest):
a = Signal(intbv(-1)[16:])
z = Signal(intbv(0)[16:])
looptest_inst = LoopTest(a, z)
data = tuple([randrange(2**min(i, 16)) for i in range(100)])
@instance
def stimulus():
for i in range(100):
a.next = data[i]
yield delay(10)
print(z)
return stimulus, looptest_inst
示例14: test_signed_list
# 需要導入模塊: import random [as 別名]
# 或者: from random import randrange [as 別名]
def test_signed_list():
'''The correct initial value should be used for signed type signal lists
'''
min_val = -12
max_val = 4
initial_vals = [intbv(
randrange(min_val, max_val), min=min_val, max=max_val)
for each in range(10)]
runner(initial_vals, tb=initial_value_list_bench)
# All the same case
initial_vals = [intbv(
randrange(min_val, max_val), min=min_val, max=max_val)] * 10
runner(initial_vals, tb=initial_value_list_bench)
示例15: benchBool
# 需要導入模塊: import random [as 別名]
# 或者: from random import randrange [as 別名]
def benchBool(self, ConstWire):
p = Signal(bool(0))
q = Signal(bool(0))
q_v = Signal(bool(0))
constwire_inst = toVerilog(ConstWire, p, q)
constwire_v_inst = ConstWire_v(ConstWire.__name__, p, q_v)
def stimulus():
for i in range(100):
p.next = randrange(2)
yield delay(10)
self.assertEqual(q, q_v)
return stimulus(), constwire_inst, constwire_v_inst